Patents Assigned to I-TEN
  • Patent number: 10047451
    Abstract: A process for fabrication of all-solid-state thin film batteries, may include batteries including a film of anode materials, a film of solid electrolyte materials and a film of cathode materials. Each of these three films may be deposited using an electrophoresis process. The anode film and the cathode film may each be deposited on a conducting substrate, preferably a thin metal sheet or band, or a metalized insulating sheet or band or film. The conducting substrates or their conducting elements may be useable as battery current collectors, the electrolyte film may be deposited on the anode and/or cathode film. The process may also include stacking the sheets or bands so as to form at least one battery with a “collector/anode/electrolyte/cathode/collector” type of stacked structure.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: August 14, 2018
    Assignee: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Patent number: 9755272
    Abstract: An all-inorganic, all-solid-state monolithic Li-ion battery, the monolithic body having a plurality of elementary cells, and which is produced by producing dense electrode deposits directly on the two faces of a substrate acting as a battery current collector, and by depositing an all-solid-state dense electrolyte layer on at least one of the dense electrode deposits obtained.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: September 5, 2017
    Assignee: I-TEN
    Inventor: Fabien Gaben
  • Patent number: 9660252
    Abstract: The invention relates to a process for fabrication of an electrode film in an all-solid-state battery comprising successive steps to: a) Procure a substrate, preferably a conducting substrate, b) Deposit an electrode film on said substrate by electrophoresis, from a suspension containing particles of electrode materials, c) Dry the film obtained in the previous step, d) Thermal consolidation of the electrode film obtained in the previous step by sintering, sintering being done at a temperature TR that preferably does not exceed 0.7 times the melting temperature (expressed in ° C.), even more preferably does not exceed 0.5 times the melting temperature (expressed in ° C.), and much more preferably does not exceed 0.3 times the melting temperature (expressed in ° C.) of the electrode material that melts at the lowest temperature.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 23, 2017
    Assignee: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Publication number: 20150104713
    Abstract: The invention relates to a process for fabrication of an electrode film in an all-solid-state battery comprising successive steps to: a) Procure a substrate, preferably a conducting substrate, b) Deposit an electrode film on said substrate by electrophoresis, from a suspension containing particles of electrode materials, c) Dry the film obtained in the previous step, d) Thermal consolidation of the electrode film obtained in the previous step by sintering, sintering being done at a temperature TR that preferably does not exceed 0.7 times the melting temperature (expressed in ° C.), even more preferably does not exceed 0.5 times the melting temperature (expressed in ° C.), and much more preferably does not exceed 0.3 times the melting temperature (expressed in ° C.) of the electrode material that melts at the lowest temperature.
    Type: Application
    Filed: October 30, 2012
    Publication date: April 16, 2015
    Applicant: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Patent number: 8322302
    Abstract: A method for breeding Musca Domestica includes placing imagoes of Musca Domestica in an environment having a temperature of 18-35° C. and having a humidity of 50-80%. A laying pan is provided to attract the imagoes of Musca Domestica to lay eggs in the laying pan. The laying pan includes substances capable of attracting the imagoes of Musca Domestica to lay eggs in the laying pan. The eggs are transferred into a cultivating material including at least one product of soybean and/or milk. The eggs of Musca Domestica are bred at a temperature of 20-35° C. until hatching into larvae. The larvae are placed on swine feces and bred at a temperature of 20-35° C. for 2-3 days. The yield and breeding speed of the larvae of Musca Domestica are increased by the method.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 4, 2012
    Assignee: New I Ten Rin Enterprise Co., Ltd.
    Inventor: Chun-Hsung Chang
  • Patent number: 8322304
    Abstract: A method for producing a nutrient from larvae of Musca Domestica includes breeding and growing imagoes of Musca Domestica in an environment having a temperature of 18-35° C. and having a humidity of 50-80%. The imagoes of Musca Domestica lay eggs in the environment. The eggs of Musca Domestica are transferred into a cultivating material including at least one product of soybean and/or milk. The eggs of Musca Domestica are bred at a temperature of 20-35° C. until hatching into larvae. The larvae of Musca Domestica are placed on swine feces/urine of a thickness of 4-10 cm at a temperature of 20-35° C. for 2-3 days. The larvae feed on and decompose the swine feces/urine. The larvae of Musca Domestica are collected and treated by hot water and dehydrated to obtain a nutrient.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 4, 2012
    Assignee: New I Ten Rin Enterprise Co., Ltd.
    Inventor: Chun-Hsung Chung
  • Patent number: 8322303
    Abstract: A method for treating swine feces/urine includes breeding and growing imagoes of Musca Domestica in an environment having a temperature of 18-35° C. and having a humidity of 50-80%. The imagoes of Musca Domestica lay eggs in the environment. The eggs of Musca Domestic are transferred into a cultivating material including at least one product of soybean and/or milk. The eggs of Musca Domestica are bred at a temperature of 20-35° C. until hatching into larvae. The larvae of Musca Domestica are placed on swine feces/urine of a thickness of 4-10 cm at a temperature of 20-35° C. for 2-3 days. The larvae feed on and decompose the swine feces/urine. The swine feces/urine can be decomposed in 5-7 days without causing pollution to the air, water sources, and environment.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 4, 2012
    Assignee: New I Ten Rin Enterprise Co., Ltd.
    Inventor: Chun-Hsung Chang
  • Patent number: 8322305
    Abstract: A method for making fertilizer from swine feces/urine by using Musca Domestica includes breeding and growing imagoes of Musca Domestica in an environment having a temperature of 18-35° C. and having a humidity of 50-80%. The imagoes of Musca Domestica lay eggs in the environment. The eggs of Musca Domestic are transferred into a cultivating material including at least one product of soybean and/or milk. The eggs of Musca Domestica are bred at a temperature of 20-35° C. until hatching into larvae. The larvae of Musca Domestica are placed on swine feces/urine of a thickness of 4-10 cm at a temperature of 20-35° C. for 2-3 days. The larvae feed on and decompose the swine feces/urine. The swine feces/urine decomposed by the larvae of Musca Domestica are collected and used as fertilizer.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 4, 2012
    Assignee: New I Ten Rin Enterprise Co., Ltd.
    Inventor: Chun-Hsung Chang