Patents Assigned to ICEMOS Technology, Ltd.
  • Patent number: 9576842
    Abstract: A method of manufacturing a semiconductor device includes providing a first semiconductor substrate having a first main surface and an opposing second main surface, and forming a pattern into the first semiconductor substrate. The pattern includes a plurality of trenches defining a plurality of mesas. Each of the plurality of mesas has sidewalls and a free surface formed by material of the first semiconductor substrate. The method further includes forming a cavity in the first semiconductor substrate such that the pattern is recessed in the cavity, forming an oxide layer in the cavity and on the sidewalls and free surfaces of the plurality of mesas, and etching the oxide layer to remove the oxide layer from the free surfaces of the plurality of mesas and at least a portion of the sidewalls of the plurality of mesas.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: February 21, 2017
    Assignee: Icemos Technology, Ltd.
    Inventor: Hugh J. Griffin
  • Patent number: 9461109
    Abstract: A method of forming a superjunction device includes providing a semiconductor layer having first and second opposing main surfaces and a first doping concentration of a dopant of a first conductivity type, forming at least one device proximate the first main surface, forming at least one trench adjacent to the device and extending into the semiconductor layer from the first main surface, doping at least a portion of a sidewall of the trench with a dopant of a second, different conductivity type to form a first region in the semiconductor layer adjacent to the sidewall and extending at least partially between the first and second main surfaces, providing a substrate with a first dielectric layer arranged thereon, bonding the first dielectric layer to the first main surface to cover the trench and at least a portion of the device, and removing the substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: October 4, 2016
    Assignee: Icemos Technology, Ltd.
    Inventors: Takeshi Ishiguro, Samuel Anderson
  • Publication number: 20160225638
    Abstract: A method of manufacturing a semiconductor device includes providing a first semiconductor substrate having a first main surface and an opposing second main surface, and forming a pattern into the first semiconductor substrate. The pattern includes a plurality of trenches defining a plurality of mesas. Each of the plurality of mesas has sidewalls and a free surface formed by material of the first semiconductor substrate. The method further includes forming a cavity in the first semiconductor substrate such that the pattern is recessed in the cavity, forming an oxide layer in the cavity and on the sidewalls and free surfaces of the plurality of mesas, and etching the oxide layer to remove the oxide layer from the free surfaces of the plurality of mesas and at least a portion of the sidewalls of the plurality of mesas.
    Type: Application
    Filed: December 10, 2013
    Publication date: August 4, 2016
    Applicant: ICEMOS TECHNOLOGY LTD.
    Inventor: Hugh J. GRIFFIN
  • Patent number: 9147751
    Abstract: Superjunction semiconductor devices having narrow surface layout of terminal structures and methods of manufacturing the devices are provided. The narrow surface layout of terminal structures is achieved, in part, by connecting a source electrode to a body contact region within a semiconductor substrate at a body contact interface comprising at least a first side of the body contact region other than a portion of a first main surface of the semiconductor substrate.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: September 29, 2015
    Assignee: Icemos Technology Ltd
    Inventors: Samuel Anderson, Takeshi Ishiguro
  • Patent number: 8963239
    Abstract: A superjunction device includes a substrate having first and second main surfaces and a first doping concentration of a first dopant. A first semiconductor layer having a second doping concentration of the first dopant is formed on the substrate. A second semiconductor layer is formed on the first layer and has a main surface. At least one trench extends from the main surface at least partially into the first semiconductor layer. A first region having a third doping concentration of the first dopant extends at least partially between the main surface and the first layer. A second region having a fourth doping concentration of a second dopant is disposed between the first region and a trench sidewall and extends at least partially between the main surface and the first layer. A third region having a fifth doping concentration of the first dopant is disposed proximate the main surface.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: February 24, 2015
    Assignee: Icemos Technology, Ltd.
    Inventors: Samuel Anderson, Takeshi Ishiguro, Kenji Sugiura
  • Patent number: 8946814
    Abstract: Superjunction semiconductor devices having narrow surface layout of terminal structures and methods of manufacturing the devices are provided. The narrow surface layout of terminal structures is achieved, in part, by connecting a source electrode to a body contact region within a semiconductor substrate at a body contact interface comprising at least a first side of the body contact region other than a portion of a first main surface of the semiconductor substrate.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: February 3, 2015
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Takeshi Ishiguro
  • Patent number: 8895369
    Abstract: A superjunction semiconductor device is provided having at least one column of a first conductivity type and at least one column of a second conductivity type extending from a first main surface of a semiconductor substrate toward a second main surface of the semiconductor substrate opposed to the first main surface. The at least one column of the second conductivity type has a first sidewall surface proximate the at least one column of the first conductivity type and a second sidewall surface opposed to the first sidewall surface. A termination structure is proximate the second sidewall surface of the at least one column of the second conductivity type. The termination structure includes a layer of dielectric of an effective thickness and consumes about 0% of the surface area of the first main surface. Methods for manufacturing superjunction semiconductor devices and for preventing surface breakdown are also provided.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 25, 2014
    Assignee: Icemos Technology Ltd.
    Inventor: Xu Cheng
  • Publication number: 20140264620
    Abstract: A semiconductor device includes a semiconductor layer having first and second main surfaces, with the first surface defining a plane containing first and second perpendicular axes. A first gate is disposed proximate the first main surface and extends parallel to the first axis. A dielectric layer is formed on the first main surface and separates the first gate from the first main surface. First and second trenches are formed in the semiconductor layer proximate the first gate and spaced apart in a direction parallel to the first axis. First and second pluralities of contact windows are formed in the dielectric layer to expose the first main surface and are respectively arranged in first and second rows extending between the first and second trenches in a direction parallel to the first axis. Adjacent contact windows in each first row are separated only by the dielectric layer.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Icemos Technology Ltd.
    Inventors: Kenji SUGIURA, Takeshi ISHIGURO
  • Publication number: 20140264582
    Abstract: A superjunction device includes a substrate having first and second main surfaces and a first doping concentration of a first dopant. A first semiconductor layer having a second doping concentration of the first dopant is formed on the substrate. A second semiconductor layer is formed on the first layer and has a main surface. At least one trench extends from the main surface at least partially into the first semiconductor layer. A first region having a third doping concentration of the first dopant extends at least partially between the main surface and the first layer. A second region having a fourth doping concentration of a second dopant is disposed between the first region and a trench sidewall and extends at least partially between the main surface and the first layer. A third region having a fifth doping concentration of the first dopant is disposed proximate the main surface.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: ICEMOS TECHNOLOGY LTD.
    Inventors: Samuel ANDERSON, Takeshi ISHIGURO, Kenji SUGIURA
  • Patent number: 8736019
    Abstract: A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: May 27, 2014
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Koon Chong So
  • Patent number: 8716829
    Abstract: A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: May 6, 2014
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Koon Chong So
  • Patent number: 8580651
    Abstract: Methods for manufacturing trench type semiconductor devices involve refilling the trenches after high temperature processing steps are performed. The methods allow thermally unstable materials to be used as refill materials for the trenches of the device. Trench type semiconductor devices containing thermally unstable refill materials are also provided. In particular, methods of manufacturing and devices of a trench type semiconductor devices containing organic refill materials are provided.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 12, 2013
    Assignee: Icemos Technology Ltd.
    Inventor: Takeshi Ishiguro
  • Patent number: 8253243
    Abstract: A method of manufacturing a semiconductor device includes providing first and second semiconductor substrates, each having first and second main surfaces opposite to one another. A roughened surface is formed on at least one of the first main surface of the first semiconductor substrate and the second main surface of the second semiconductor substrate. A dielectric layer is formed on the first main surface of the semiconductor substrate and the second semiconductor substrate is disposed on the dielectric layer opposite to the first semiconductor substrate. The second main surface of the second semiconductor substrate contacts the dielectric layer.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: August 28, 2012
    Assignee: Icemos Technology Ltd.
    Inventor: Robin Wilson
  • Publication number: 20120184072
    Abstract: A superjunction semiconductor device is provided having at least one column of a first conductivity type and at least one column of a second conductivity type extending from a first main surface of a semiconductor substrate toward a second main surface of the semiconductor substrate opposed to the first main surface. The at least one column of the second conductivity type has a first sidewall surface proximate the at least one column of the first conductivity type and a second sidewall surface opposed to the first sidewall surface. A termination structure is proximate the second sidewall surface of the at least one column of the second conductivity type. The termination structure includes a layer of dielectric of an effective thickness and consumes about 0% of the surface area of the first main surface. Methods for manufacturing superjunction semiconductor devices and for preventing surface breakdown are also provided.
    Type: Application
    Filed: March 28, 2012
    Publication date: July 19, 2012
    Applicant: ICEMOS TECHNOLOGY LTD.
    Inventor: Xu CHENG
  • Patent number: 8169057
    Abstract: A positive-intrinsic-negative (PIN)/negative-intrinsic-positive (NIP) diode includes a semiconductor substrate having first and second main surfaces opposite to each other. The semiconductor substrate is of a first conductivity. The PIN/NIP diode includes at least one trench formed in the first main surface which defines at least one mesa. The trench extends to a first depth position in the semiconductor substrate. The PIN/NIP diode includes a first anode/cathode layer proximate the first main surface and the sidewalls and the bottom of the trench. The first anode/cathode layer is of a second conductivity opposite to the first conductivity. The PIN/NIP diode includes a second anode/cathode layer proximate the second main surface, a first passivation material lining the trench and a second passivation material lining the mesa. The second anode/cathode layer is the first conductivity.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: May 1, 2012
    Assignee: Icemos Technology Ltd.
    Inventors: Robin Wilson, Conor Brogan, Hugh J. Griffin, Cormac MacNamara
  • Patent number: 8159039
    Abstract: A superjunction semiconductor device is provided having at least one column of a first conductivity type and at least one column of a second conductivity type extending from a first main surface of a semiconductor substrate toward a second main surface of the semiconductor substrate opposed to the first main surface. The at least one column of the second conductivity type has a first sidewall surface proximate the at least one column of the first conductivity type and a second sidewall surface opposed to the first sidewall surface. A termination structure is proximate the second sidewall surface of the at least one column of the second conductivity type. The termination structure includes a layer of dielectric of an effective thickness and consumes about 0% of the surface area of the first main surface. Methods for manufacturing superjunction semiconductor devices and for preventing surface breakdown are also provided.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: April 17, 2012
    Assignee: Icemos Technology Ltd.
    Inventor: Xu Cheng
  • Patent number: 8148203
    Abstract: A semiconductor on insulator (SOI) wafer includes a semiconductor substrate having first and second main surfaces opposite to each other. A dielectric layer is disposed on at least a portion of the first main surface of the semiconductor substrate. A device layer has a first main surface and a second main surface. The second main surface of the device layer is disposed on a surface of the dielectric layer opposite to the semiconductor substrate. A plurality of intended die areas are defined on the first main surface of the device layer. The plurality of intended die areas are separated from one another. A plurality of die access trenches are formed in the semiconductor substrate from the second main surface. Each of the plurality of die access trenches are disposed generally beneath at least a respective one of the plurality of intended die areas.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: April 3, 2012
    Assignee: Icemos Technology Ltd.
    Inventors: Robin Wilson, Conor Brogan, Hugh J. Griffin, Cormac MacNamara
  • Patent number: 8129252
    Abstract: A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: March 6, 2012
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Koon Chong So
  • Patent number: 8114751
    Abstract: A method of manufacturing a semiconductor device includes providing a semiconductor wafer and forming at least one first trench in the wafer having first and second sidewalls and a first orientation on the wafer. The first sidewall of the at least one first trench is implanted with a dopant of a first conductivity at a first implantation direction. The first sidewall of the at least one first trench is implanted with the dopant of the first conductivity at a second implantation direction. The second implantation direction is orthogonal to the first implantation direction. The first and second implantation directions are non-orthogonal to the first sidewall.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 14, 2012
    Assignee: Icemos Technology Ltd.
    Inventors: Takeshi Ishiguro, Hugh J. Griffin, Kenji Sugiura
  • Patent number: 8058091
    Abstract: A photodetector includes a semiconductor substrate having first and second main surfaces opposite to each other. The photodetector includes at least one trench formed in the first main surface and a first anode/cathode region having a first conductivity formed proximate the first main surface and sidewalls of the at least one trench. The photodetector includes a second anode/cathode region proximate the second main surface. The second anode/cathode region has a second conductivity opposite the first conductivity. The at least one trench extends to the second main surface of the semiconductor substrate.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: November 15, 2011
    Assignee: Icemos Technology Ltd.
    Inventors: Robin Wilson, Conor Brogan, Hugh J. Griffin, Cormac MacNamara