Abstract: A method for wireless communication between a moving vehicle and remote servers through at least one external mobile network. A router in the moving vehicle is configured for receiving and transmitting wireless data to and from both an aggregation server, using aggregated communication over at least two separate links, and at least one other stationary communication server, using non-aggregated communication over a single link. The router is further accessible by a plurality of client devices onboard the moving vehicle. At least one selection rule is provided in the router for selecting whether to use aggregated or non-aggregated communication, and a determination is made, upon a request from a client device to communicate with one of said remote servers, whether one of the at least one rules applies; and if so selecting to use aggregated communication via the at least one other communication server for communication based on the determination.
Type:
Application
Filed:
November 29, 2016
Publication date:
June 8, 2017
Applicant:
ICOMERA AB
Inventors:
Martin BERGEK, Mats KARLSSON, Peter EKLUND
Abstract: A method and system for wireless communication between a moving vehicle, such as a train, and a remote server through at least one external mobile network are disclosed. The communication system includes at least one router in the train for receiving and transmitting wireless data communication to and from a stationary communication server outside the train through at least one exterior mobile network via at least one antenna. The router includes a control unit configured to allocate bandwidth according to a predefined packet policy to streams of data packets which are matched to the predefined packet policies, providing for a very efficient bandwidth management in a wireless network within a train. Hereby, is easy to prioritize voice-over-IP (VOIP) and/or VPN traffic over video traffic.
Abstract: A method for identifying an alteration of an object in the vicinity of a train in operation travelling on a rail track along a route. The train is operative to transport passengers or cargo. The method includes capturing image data of an object located at a point of interest along said route when said train is operational on said rail track. Furthermore, said image data is analyzed to find matching reference image data stored in a data storage device. Based on said matching reference image data, said object is located at a position within said point of interest. Further, said image data is analyzed to find an alteration of said object compared to said matching reference image data. If an alteration is found, an action depending may be taken.
Abstract: A method and a system for receiving streaming media from an external provider onboard a moving vehicle via wireless communication is disclosed. The method includes: checking, upon a request from a client device to obtain a streaming media from said external provider, whether a segment of said streaming media is available in the cache or not; forwarding, when a segment of the requested streaming media is available in the cache, the segment of the streaming media object to the client device from the cache; downloading, when the segment of the requested streaming media is not available in the cache, the segment of the streaming media object from the external server, and forwarding the downloaded segment to the client device, and storing the segment in the cache.
Abstract: A vehicle communication system is disclosed, for use on e.g. trains, ferries and busses. The system includes an internal local area network (LAN) arranged within the vehicle; at least one antenna for wireless communication with external wide area networks (WAN) outside the vehicle; and a data communication router for providing data communication between said internal LAN and said external WANs. The data communication router includes a plurality of modems for communication with said external WANs, a subscriber identity module (SIM) pool including a plurality of SIMs, and a controller capable of periodically assigning SIMs within said SIM pool to any one of said modems. Hereby, a very efficient use of the modems and SIMs is obtained, leading to a less costly system and a more efficient communication.
Abstract: A wireless communication system for a moving vehicle, such as trains, is disclosed. The system includes at least one router in the moving vehicle for receiving and transmitting wireless voice communication and data communication to and from a stationary communication server outside the moving vehicle through an exterior mobile network. Further, the system includes at least one femtocell provided within the moving vehicle, and being connected to the router for wireless transferring of wireless voice communication and data communication between mobile terminals within the moving vehicle and the router, wherein the at least one femtocell is controlled by a femtocell controller directly or indirectly connected to the communication server outside the moving vehicle.
Type:
Application
Filed:
May 16, 2013
Publication date:
November 21, 2013
Applicant:
Icomera AB
Inventors:
Martin BERGEK, Mats KARLSSON, Claes BECKMAN
Abstract: A vehicle communication system is disclosed, for use on e.g. trains, ferries and busses. The system includes an internal local area network (LAN) arranged within the vehicle; at least one antenna for wireless communication with external wide area networks (WAN) outside the vehicle; and a data communication router for providing data communication between said internal LAN and said external WANs. The data communication router includes a plurality of modems for communication with said external WANs, a subscriber identity module (SIM) pool including a plurality of SIMs, and a controller capable of periodically assigning SIMs within said SIM pool to any one of said modems. Hereby, a very efficient use of the modems and SIMs is obtained, leading to a less costly system and a more efficient communication.