Abstract: A method of wavefront (100) analysis including applying a transform to the wavefront, applying a plurality of different phase changes (110, 112, 114) to the transformed wavefront (108), obtaining a plurality of intensity maps (130, 132, 134) wherein the plurality of different phase changes are applied to region of the transformed wavefront, corresponding to a shape of the light source.
Abstract: The present invention is directed to a method for detecting anomalies in a semiconductor substrate comprising the steps of providing a semiconductor substrate, making an inspection image I of the substrate, generating an image K from image I by image processing, generating image B by binarizing image K, and examining image I using image B, characterized in that generating image K comprises multiplying a high-pass convolution filtered image G(I) from image I and a first weight image W1. The present invention is also directed to an apparatus suitable for applying the method.
Type:
Application
Filed:
August 29, 2008
Publication date:
May 26, 2011
Applicant:
ICOS VISION SYSTEMS NV
Inventors:
Dominque Janssens, Luc Vanderheydt, Johan DeGreeve, Lieve Govaerts
Abstract: Methods and apparatus to perform wavefront analysis, including phase and amplitude information, and 3D measurements in optical systems, and in particular those based on analyzing the output of an intermediate plane, such as an image plane, of an optical system. Measurement of surface topography in the presence of thin film coatings, or of the individual layers of a multilayered structure is described. Multi-wavelength analysis in combination with phase and amplitude mapping is utilized. Methods of improving phase and surface topography measurements by wavefront propagation and refocusing, using virtual wavefront propagation based on solutions of Maxwell's equations are described. Reduction of coherence noise in optical imaging systems is achieved by such phase manipulation methods, or by methods utilizing a combination of wideband and coherent sources.
Abstract: A method of wavefront (100) analysis including applying a transform to the wavefront, applying a plurality of different phase changes (110, 112, 114) to the transformed wavefront (108), obtaining a plurality of intensity maps (130, 132, 134) wherein the plurality of different phase changes are applied to region of the transformed wavefront, corresponding to a shape of the light source.
Abstract: A method and an apparatus for measuring respective positions of a set of N contact elements of an electronic component. A first and a second light path are created by a first and a second light beam which have different viewing angles. Both the first and the second light path can selectively be opened and both end into the image plane of a single camera. The positions being determined by using the first and second image produced by the first and second light beam respectively.
Type:
Grant
Filed:
January 2, 2002
Date of Patent:
September 9, 2008
Assignee:
Icos Vision Systems NV
Inventors:
Carl Smets, Karel Van Gils, John Zabolitsky, Jurgen Everaerts
Abstract: The orientation of the surface of an object to be examined is changed by adjusting the distance thereof to an optical measuring system in a plane-parallel manner in relation to a focusing plane of the optical measuring system, enabling high speeds of examination to be obtained during examination of the extended surfaces of the object. A distance-measurement system which is mounted in an auxiliary manner with regard to the measuring head enables fluctuations in the topography inside the surface of the object to be compensated in such a way that a currently received point or area can be optically sharpened.
Abstract: An inspection system optically examines the surfaces of objects to detect surface errors. The system scans image strips and, consequently, a given surface rapidly and with sufficient resolution using a linescan camera and an upstream microscope by aligning the captured lines.