Patents Assigned to Idaho Research Foundation, Inc.
  • Patent number: 6334954
    Abstract: Novel methods for biodegrading nitroaromatic compounds present as contaminants in soil or water using microorganisms are disclosed. Water is treatable directly; dry soil is first converted into a fluid medium by addition of water. The preferred method comprises two stages, each employing microorganisms: a fermentative stage, followed by an anaerobic stage. The fermentative stage is rapid, wherein an inoculum of aerobic and/or facultative microorganisms ferments a carbohydrate added to the fluid medium, exhausting the oxygen in the fluid medium and thereby inhibiting oxidative polymerization of amino by-products of the nitroaromatics. In the subsequent anaerobic stage, an inoculum of a mixed population of anaerobic microorganisms completes the mineralization of the contaminant nitroaromatics, using the remaining carbohydrate as a carbon and energy source.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: January 1, 2002
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Donald L. Crawford, Todd O. Stevens, Ronald L. Crawford
  • Patent number: 6235675
    Abstract: In one aspect, the invention includes a method of forming a material containing carbon and boron, comprising: a) providing a substrate within a chemical vapor deposition chamber; b) flowing a carbon and boron precursor into the chamber, the precursor being a compound that comprises both carbon and boron; and c) utilizing the precursor to chemical vapor deposit a material onto the substrate, the material comprising carbon and boron. In another aspect, the invention includes a method of forming a catalyst, comprising: a) providing a substrate within a chemical vapor deposition chamber; b) flowing a carbon and boron precursor into the chamber, the precursor being a compound that comprises both carbon and boron; c) utilizing the precursor to chemical vapor deposit a first material onto the substrate, the first material comprising carbon and boron; and d) coating the first material with a catalytic material.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: May 22, 2001
    Assignee: Idaho Research Foundation, Inc.
    Inventor: David N. McIlroy
  • Patent number: 6231636
    Abstract: A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: May 15, 2001
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Francis H. Froes, Baburaj G. Eranezhuth, Keith Prisbrey
  • Patent number: 6215021
    Abstract: A family of electrophilic trifluoromethylating reagents which can be synthesized by comparatively simple, inexpensive routes, and for which the reactivity can be varied according to need. A composition of matter according to the first embodiment of the invention comprises a compound having the formula: in which A comprises H or F and B comprises F, SCF3, OCF3, OCHF2, S+(CF3)C6H5, NO2 or an NO2 substituent. In a second embodiment of the invention, a process for preparing a trifluoromethyl diphenylsulfonium triflate compound corresponding to the formula shown above comprises reacting phenyl trifluoromethyl sulfoxide or one of its derivatives with an aromatic compound in which A comprises H or F and B comprises H, F, SCF3, OCF3, OCHF2, S+(CF3)C6H5, NO2 or an NO2 substituent. In a third embodiment of the invention, a trifluoromethylation process comprises reacting a trifluoromethyl diphenylsulfonium triflate corresponding to the formula shown above with an electron rich substrate.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: April 10, 2001
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Jean'ne M. Shreeve, Jing-Jing Yang, Robert L. Kirchmeier
  • Patent number: 6207055
    Abstract: A slurry-forming apparatus and method of using the slurry-forming apparatus. In one aspect, the apparatus (122) comprising: a) a vessel, comprising: i) a cylindrical vessel wall (60, 160), the cylindrical vessel wall having an interior surface; ii) a downwardly-sloped floor joined to the vessel wall; an outlet in the downwardly-sloped floor; iii) and one or more baffles (172, 182) along the interior surface of the vessel wall; b) a fluid inlet opening (86) into the vessel and being configured for injecting a fluid into the vessel; c) a granular material inlet opening into the vessel and being configured for providing a granular material into the vessel; and d) the baffles, fluid inlet, granular material inlet and outlet being configured relative to one another whereby a slurry is formed from the injected fluid and provided granular material without substantial mechanical agitation of the vessel, and whereby the slurry exits the vessel through the outlet.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: March 27, 2001
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Ronald J. Satterfield, Thomas W. Yergovich
  • Patent number: 6187911
    Abstract: A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of &bgr;-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: February 13, 2001
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Neil G. Smart, Cindy Phelps
  • Patent number: 6156560
    Abstract: The present invention pertains to novel strains of Pseuedomonas corrugata and the use of the strains in biological control against soil-borne pathogens of plants. A number of these strains are shown to be effective in reducing or controlling soil-borne pathogens of plants, including, but not limited to peas, potatoes and wheat. In particular the present invention pertains to 3 strains of Pseudomonas corrugata herein referred to as 0782-6, 0683-32 and 1090-11. P. corrugata isolates 0782-6 and 0683-32 have been identified as having the strongest antimicrobial activity to a variety of plants. Isolate 1090-11 showed little or no antifungal activity. The P. corrugate strains may be formulated with a variety of delivery mediums to produce bacterial inocula, that may be used as either a dry powder or liquid suspension. Also encompassed by this invention is a method of identifying and selecting desiccation tolerant strains of bacteria and a method of producing the desiccated formulations of the identified strains.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: December 5, 2000
    Assignee: Idaho Research Foundation, Inc.
    Inventor: Wesley W. C. Chun
  • Patent number: 6152982
    Abstract: The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: November 28, 2000
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Francis H. Froes, Baburaj G. Eranezhuth, Oleg N. Senkov
  • Patent number: 6132491
    Abstract: A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: October 17, 2000
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Fred H. Hunt, Neil G. Smart, Yuehe Lin
  • Patent number: 6117413
    Abstract: The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: September 12, 2000
    Assignees: Battelle Memorial Institute, Idaho Research Foundation, Inc.
    Inventors: Darrell R. Fisher, Chien M. Wai, Xiaoyuan Chen
  • Patent number: 6084150
    Abstract: Novel methods for biodegrading nitroaromatic compounds present as contaminants in soil or water using microorganisms are disclosed. Water is treatable directly; dry soil is first converted into a fluid medium by addition of water. The preferred method comprises two stages, each employing microorganisms: a fermentative stage, followed by an anaerobic stage. The fermentative stage is rapid, wherein an inoculum of aerobic and/or facultative microorganisms ferments a carbohydrate added to the fluid medium, exhausting the oxygen in the fluid medium and thereby inhibiting oxidative polymerization of amino by-products of the nitroaromatics. In the subsequent anaerobic stage, an inoculum of a mixed population of anaerobic microorganisms completes the mineralization of the contaminant nitroaromatics, using the remaining carbohydrate as a carbon and energy source.
    Type: Grant
    Filed: February 12, 1997
    Date of Patent: July 4, 2000
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Donald L. Crawford, Todd O. Stevens, Ronald L. Crawford
  • Patent number: 6075130
    Abstract: The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: June 13, 2000
    Assignees: Battelle Memorial Institute, Idaho Research Foundation, Inc.
    Inventors: Xiaoyuan Chen, Chien M. Wai, Darrell R. Fisher
  • Patent number: 5968503
    Abstract: This invention relates to biocontrol formulations suitable for reducing the susceptibility of plants to fungal phytopathogens and for degrading turf thatch. In one aspect of the invention, a culture of strain Streptomyces sp. WYE 53 ATCC 55750 is incorporated into suitable delivery medium and applied to plant seeds and roots. Another aspect of the invention is directed to a composition comprising cultures of strains Streptomyces sp. WYE 53 ATCC 55750 and/or Streptomyces sp. YCED 9 ATCC 55660 and to a method for degrading turf thatch by contacting the turf thach with cultures of strains Streptomyces sp. WYE 53 ATCC 55750 and/or Streptomyces sp. YCED 9 ATCC 55660 which are incorporated into suitable delivery medium.
    Type: Grant
    Filed: January 9, 1998
    Date of Patent: October 19, 1999
    Assignee: Idaho Research Foundation, Inc.
    Inventor: Donald L. Crawford
  • Patent number: 5965025
    Abstract: A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides.
    Type: Grant
    Filed: January 21, 1998
    Date of Patent: October 12, 1999
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Kenneth E. Laintz
  • Patent number: 5792357
    Abstract: A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: August 11, 1998
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Neil G. Smart, Yuehe Lin
  • Patent number: 5785246
    Abstract: A variable flow sprinkler head having an inlet, an outlet and a nozzle, the nozzle having an orifice therein, the cross sectional area of the orifice being changeable by alternately inserting or removing a needle into the sprinkler head nozzle orifice. The needle diameter is sized to provide a predetermined flow rate reduction when the needle is inserted into the nozzle orifice. When the needle is removed full flow occurs. When the needle is inserted into the center of the nozzle orifice, the cross sectional area is effectively reduced by an amount equal to the cross sectional area of the needle. A linear actuator for the needle is centered above the outlet. The linear actuator may be either an electric solenoid or a hydraulic actuator. Alternatively, the linear actuator may provide a mechanism to allow the sprinkler to be operated between either of two preselected flow rates or in the alternative to be shut off completely.
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: July 28, 1998
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Bradley A. King, Gary L. Foster, Dennis C. Kincaid, Rodney B. Wood
  • Patent number: 5770085
    Abstract: A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: June 23, 1998
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Neil G. Smart, Yuehe Lin
  • Patent number: 5730874
    Abstract: A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides.
    Type: Grant
    Filed: June 2, 1994
    Date of Patent: March 24, 1998
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Kenneth E. Laintz
  • Patent number: 5656422
    Abstract: Methods and compositions are provided for the detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and other phenoxy ether compounds. The phenoxy ether bond of 2,4-D is enzymatically cleaved by 2,4-D .alpha.-ketoglutarate dioxygenase to form 2,4-dichlorophenol, which is assayed by the 4-aminoantipyrine method. The enzyme is supplied in a dried form, preferably immobilized on a solid support, and is stable at room temperature for several months even in a highly impure state, e.g., crude cell extracts or dried cells.
    Type: Grant
    Filed: October 5, 1994
    Date of Patent: August 12, 1997
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Ronald L. Crawford, Yongxiang Gu, Roger A. Korus, David B. Knaebel
  • Patent number: RE35661
    Abstract: Plants, plant tissues and plant seeds which are resistant to inhibition by sulfonylurea and/or imidazolinone herbicides are provided. In particular, domestic lettuce varieties having resistance to herbicides which target the enzyme acetolactate synthase are provided. The resistant plants find use in areas where weed growth is controlled by sulfonylurea and/or imidazolinone herbicides.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: November 11, 1997
    Assignee: Idaho Research Foundation, Inc.
    Inventor: Donald C. Thill