Abstract: A borehole muon detector for muon radiography or geotomography is provided, the borehole muon detector including a substantially cylindrical housing, which defines a bore, a pair of end caps, each end cap sealing an end of the cylindrical housing and a plurality of sealed drift tubes which are longitudinally disposed in the bore of the housing to form a bundle of drift tubes, wherein each sealed drift tube comprises: a centrally located anode wire disposed on a longitudinal axis; an inner surface which is coated with a cathode coating, the cathode coating divided into a first cathode pad and a second cathode pad by a Vernier pattern; and a timer in electrical communication with the anode wire for measuring a drift time. A system and a method are also provided.
Abstract: A borehole muon detector for muon radiography or geotomography is provided, the borehole muon detector including a substantially cylindrical housing, which defines a bore, a pair of end caps, each end cap sealing an end of the cylindrical housing and a plurality of sealed drift tubes which are longitudinally disposed in the bore of the housing to form a bundle of drift tubes, wherein each sealed drift tube comprises: a centrally located anode wire disposed on a longitudinal axis; an inner surface which is coated with a cathode coating, the cathode coating divided into a first cathode pad and a second cathode pad by a Vernier pattern; and a timer in electrical communication with the anode wire for measuring a drift time. A system and a method are also provided.
Abstract: A borehole muon detector for detecting and characterizing a geographic region of interest is provided, the borehole muon detector comprising a housing and sensor, which is housed in the housing, the sensor including: a plurality of photodetector elements; at least one printed circuit board in electrical communication with the plurality of photodetectors and including an integrated electronic circuit for tracking time; a first helical bundle of scintillator fibers; an oppositely wound helical bundle of scintillator fibers, the oppositely wound helical bundle, the first helical bundle and the opposite helical bundle defining an outer cylinder, which includes a first end and a second end and a bore therebetween, each scintillator fiber of each bundle directly optically connected to a photodetector element at least at one end and indirectly optically connected to the photodetector element at no more than one end; and a plurality of scintillator bars, each comprising a first end, a second end and an optical fiber
Type:
Grant
Filed:
May 26, 2020
Date of Patent:
May 28, 2024
Assignee:
Ideon Technologies Inc.
Inventors:
Douglas William Schouten, Jacobus Van Nieuwkoop