Patents Assigned to IGS, Inc.
  • Patent number: 11660565
    Abstract: A device for separating a gas, such as air, into components, includes a plurality of modules, each module having one or more polymeric membranes capable of gas separation. A set of valves, pipes, and manifolds together arrange the modules in one of two possible configurations. In a first configuration, the modules are arranged in parallel. In a second configuration, the modules are divided into two groups which are arranged in series. The device can be switched from parallel to series, or from series to parallel, simply by changing the positions of a small number of valves, typically three valves. The device can therefore produce gas either of higher purity, or moderate purity, depending on the settings of the valves. The device also includes improved structures for connecting the modules to inlet and outlet manifolds, and also includes devices for temporarily isolating one or more modules from the system.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: May 30, 2023
    Assignee: Generon IGS, Inc.
    Inventors: Steven Reese, Marc Straub, John A. Jensvold, Robert Kociolek
  • Patent number: 11654401
    Abstract: A cartridge for non-cryogenically separating a gas into components includes a plurality of hollow polymeric fibers, the fibers being anchored by a pair of tubesheets, each tubesheet being adjacent to a head, the tubesheet and head being joined by a clamshell retainer. The cartridge does not have a core tube. The fibers are enclosed within a sleeve, the sleeve being sufficiently thin so as to be a non-structural element. The cartridge may be inserted within a larger pressure vessel. The cartridge of the present invention can accommodate more fibers than comparable cartridges of the prior art, and therefore has greater throughput.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: May 23, 2023
    Assignee: Generon IGS, Inc.
    Inventors: Robert Kociolek, Marc Straub, Frederick L. Coan, Luis Brizuela, John A. Jensvold, Kyle Jensvold, Karen Skala
  • Patent number: 11446610
    Abstract: A gas separation module includes hollow polymeric fibers held between a pair of tubesheets. The tubesheets are mounted to a core tube, and the distance between the tubesheets is maintained constant. The core tube is formed in telescoping sections, such that the fibers are attached to the tubesheets when the core tube is in its extended position, and the core tube is then collapsed, forming slack in the fibers. The core tube includes two distinct channels, connected to receive permeate and retentate gas streams, and to carry these streams to outlet ports while keeping the streams separate. Because the tubesheets are affixed to the core tube, the tubesheets do not move under the influence of gas pressure in the module. The slack in the fibers compensates for shrinkage of the fibers, prolonging the life of the module.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: September 20, 2022
    Assignee: Generon IGS, Inc.
    Inventors: Marc Straub, Robert Kociolek, Frederick L. Coan, Luis Brizuela
  • Patent number: 11103827
    Abstract: A two-stage gas-separation membrane system includes two identical membrane modules held within a single casing. A feed gas is directed into the first module, so as to produce permeate and retentate streams. One of the latter streams then becomes the feed gas for the second module, and reaches the second module through a core tube located within the module. The product of the second module is the product gas for the system. The gas streams entering the two modules flow in mutually opposite directions. This arrangement makes it feasible to provide a two-stage system while using only the number of ports that would be needed for a single stage.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 31, 2021
    Assignee: Generon IGS, Inc.
    Inventors: Frederick L. Coan, John A. Jensvold, Robert Kociolek, Marc Straub
  • Patent number: 10933369
    Abstract: An air dehydration module includes polymeric fibers for separating water vapor from air, and also includes a carbon filter material, positioned at an outlet end of the module, and within the same pressure vessel which houses the fibers. The module may generate its own sweep stream, in which case a portion of its output is directed to flow through an orifice, towards the inlet end of the module. In an alternative embodiment, the sweep gas is produced by a distinct gas-separation module, which receives an input stream from the output of the dehydration module. The dehydration module produces clean and dry air which can be used as is, or as an input stream to an air separation module.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: March 2, 2021
    Assignee: Generon IGS, Inc.
    Inventors: Marc Straub, Luis Brizuela, John A. Jensvold
  • Patent number: 10843127
    Abstract: A device for separating a gas, such as air, into components, includes a plurality of modules, each module having one or more polymeric membranes capable of gas separation. A set of valves, pipes, and manifolds together arrange the modules in one of two possible configurations. In a first configuration, the modules are arranged in parallel. In a second configuration, the modules are divided into two groups which are arranged in series. The device can be switched from parallel to series, or from series to parallel, simply by changing the positions of a small number of valves, typically three valves. The device can therefore produce gas either of higher purity, or moderate purity, depending on the settings of the valves.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: November 24, 2020
    Assignee: Generon IGS, Inc.
    Inventors: Steven Reese, Marc Straub, John A. Jensvold
  • Patent number: 10561978
    Abstract: A multi-stage polymeric membrane module system separates a gas, such as air, into components of high purity. In at least two of the stages, a portion of the retentate gas is directed into the low-pressure side of the module, to act as a sweep gas. The use of the sweep gas reduces the partial pressure of permeate gas on the low-pressure side of the membrane, and therefore improves the flow of permeate through the membrane. In a preferred embodiment, there are three modules. The output streams are taken from the retentate outlet of one module, and from the permeate outlet of another module. The output streams have very high purity, relative to the number of modules required, as compared with systems of the prior art.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: February 18, 2020
    Assignee: Generon IGS, Inc.
    Inventors: John A. Jensvold, Kyle A. Jensvold
  • Patent number: 9987600
    Abstract: A polymeric fiber for use in gas separation is formed from a spin dope which includes solvent and non-solvent materials. The fiber is passed through a quench bath, and then a leach bath, in which the solvent and non-solvent are removed. The quench bath and the leach bath include sets of rollers which transport the fiber through the system. Each set of rollers in the leach bath operates at a speed which is greater than or equal to the speed of the rollers which are immediately upstream. Thus, the fiber is stretched, in different amounts, at the same time that the solvent and non-solvent are being removed, and while the fiber is still wet. The resulting fiber has been found to exhibit superior flux and selectivity properties.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: June 5, 2018
    Assignee: Generon IGS, Inc.
    Inventors: Frederick L. Coan, Arthur J. Barajas, Jeff C. Schletz
  • Patent number: 9764275
    Abstract: A module having polymeric gas-separation membranes is capable of operation in extreme temperature environments. In one embodiment, the module includes polymeric fiber membranes, a tubesheet for holding the membranes, and a sleeve encasing the membranes, all of which are made of materials having coefficients of thermal expansion which differ from each other by not more than about 10%. In another embodiment, the membranes, the tubesheet, and the sleeve are all made of materials having a glass transition temperature greater than a highest anticipated temperature of operation of the module. In another embodiment, the module includes a head, and a clamshell having multiple protrusions which engage corresponding grooves in the head and in at least two grooves formed in the tubesheet.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 19, 2017
    Assignee: Generon IGS, Inc.
    Inventors: Jeff C. Schletz, Frederick L. Coan, Karen Skala, Marc Straub, Kyle A. Jensvold, John A. Jensvold, Luis Brizuela
  • Patent number: 9545599
    Abstract: A gaseous component is extracted non-cryogenically from a feed gas containing condensable hydrocarbons. The feed gas is passed first through a module containing polymeric fibers useful for removing water vapor from the gas. The gas is then passed through a module containing polymeric fibers selected such that they remove some, but not all, of the carbon dioxide in the stream. The gas is then passed through a module containing polymeric fibers selected to remove at least some of the remaining carbon dioxide as well as heavy hydrocarbons, defined as C5 and heavier, from the stream. The invention is especially useful in processing raw methane taken from a well, and in producing methane which is relatively free of water vapor, carbon dioxide, and heavy hydrocarbons.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: January 17, 2017
    Assignee: Generon IGS, Inc.
    Inventors: Marc Straub, John A. Jensvold
  • Patent number: 9034957
    Abstract: A composition for making polymeric fiber membranes, for use in non-cryogenic separation of gases, substantially improves product flow, with only a small decrease in the recovery ratio. The composition is a spin dope including tetrabromo bis-phenol A polycarbonate (TBBA-PC) and tetrabromo bishydroxyphenylfluorene polycarbonate (TBBHPF-PC), in proportions, by weight, ranging (in percent) from about 60/40 to 40/60, and n-methyl pyrrolidinone (NMP) and triethylene glycol (TEG), wherein the ratio of the amounts of NMP to TEG, by weight, is in the range of about 1.6-2.5. The spin dope is used to make hollow fibers for use in gas-separation membrane modules.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: May 19, 2015
    Assignee: Generon IGS, Inc.
    Inventors: John A. Jensvold, Frederick L. Coan, Arthur J. Barajas
  • Publication number: 20140291887
    Abstract: A polymeric fiber for use in gas separation is formed from a spin dope which includes solvent and non-solvent materials. The fiber is passed through a quench bath, and then a leach bath, in which the solvent and non-solvent are removed. The quench bath and the leach bath include sets of rollers which transport the fiber through the system. Each set of rollers in the leach bath operates at a speed which is greater than or equal to the speed of the rollers which are immediately upstream. Thus, the fiber is stretched, in different amounts, at the same time that the solvent and non-solvent are being removed, and while the fiber is still wet. The resulting fiber has been found to exhibit superior flux and selectivity properties.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: Generon IGS, Inc.
    Inventors: Frederick L. Coan, Arthur J. Barajas, Jeff C. Schletz
  • Publication number: 20140243572
    Abstract: A gaseous component is extracted non-cryogenically from a feed gas containing condensable hydrocarbons. The feed gas is passed first through a module containing polymeric fibers useful for removing water vapor from the gas. The gas is then passed through a module containing polymeric fibers selected such that they remove some, but not all, of the carbon dioxide in the stream. The gas is then passed through a module containing polymeric fibers selected to remove at least some of the remaining carbon dioxide as well as heavy hydrocarbons, defined as C5 and heavier, from the stream. The invention is especially useful in processing raw methane taken from a well, and in producing methane which is relatively free of water vapor, carbon dioxide, and heavy hydrocarbons.
    Type: Application
    Filed: January 15, 2014
    Publication date: August 28, 2014
    Applicant: Generon IGS, Inc.
    Inventors: Marc Straub, John A. Jensvold
  • Publication number: 20140187683
    Abstract: A composition for making polymeric fiber membranes, for use in non-cryogenic separation of gases, substantially improves product flow, with only a small decrease in the recovery ratio. The composition is a spin dope including tetrabromo bis-phenol A polycarbonate (TBBA-PC) and tetrabromo bishydroxyphenylfluorene polycarbonate (TBBHPF-PC), in proportions, by weight, ranging (in percent) from about 60/40 to 40/60, and n-methyl pyrrolidinone (NMP) and triethylene glycol (TEG), wherein the ratio of the amounts of NMP to TEG, by weight, is in the range of about 1.6-2.5. The spin dope is used to make hollow fibers for use in gas-separation membrane modules.
    Type: Application
    Filed: October 16, 2013
    Publication date: July 3, 2014
    Applicant: Generon IGS, Inc.
    Inventors: John A. Jensvold, Frederick L. Coan, Arthur J. Barajas
  • Publication number: 20130220118
    Abstract: A non-cryogenic system for gas separation includes an absorbent system for removing condensable hydrocarbons from a feed gas. The feed gas is then directed into a gas-separation membrane. The absorbent system includes a liquid absorbent having an affinity for hydrocarbons. The liquid absorbent can be, for example, compressor oil or mineral oil. A chiller and a carbon bed may optionally be positioned between the absorbent system and the membrane. The absorbent is periodically regenerated by reducing the pressure or increasing the temperature of the liquid.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 29, 2013
    Applicant: GENERON IGS, INC.
    Inventor: Generon IGS, Inc.
  • Patent number: 8409324
    Abstract: An air dehydration membrane module is provided with a sweep gas which is taken from the waste gas of a pressure swing adsorption (PSA) unit. No additional compressor is required, other than the compressor forming part of the PSA unit. In another embodiment, the sweep gas includes the combination of dried product gas, taken from the dehydration membrane module, and a supplemental gas, which may be ambient air, or permeate gas from an air separation membrane, or waste gas from a PSA unit. An air ejector combines the streams, without the use of an additional compression step, and the combined gas is used as a sweep stream for the dehydration module. The invention also includes the method of selecting an optimum point at which the sweep gas is injected into the module.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: April 2, 2013
    Assignee: Generon IGS, Inc.
    Inventors: Marc Straub, John A. Jensvold, Raymond K. M. Chan
  • Publication number: 20130074688
    Abstract: An air dehydration membrane module is provided with a sweep gas which is taken from the waste gas of a pressure swing adsorption (PSA) unit. No additional compressor is required, other than the compressor forming part of the PSA unit. In another embodiment, the sweep gas includes the combination of dried product gas, taken from the dehydration membrane module, and a supplemental gas, which may be ambient air, or permeate gas from an air separation membrane, or waste gas from a PSA unit. An air ejector combines the streams, without the use of an additional compression step, and the combined gas is used as a sweep stream for the dehydration module. The invention also includes the method of selecting an optimum point at which the sweep gas is injected into the module.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Applicant: Generon IGS, Inc.
    Inventor: Generon IGS, Inc.
  • Patent number: 8398755
    Abstract: An integrated fiber membrane module for air dehydration and air separation includes dehydration and separation units disposed concentrically in a generally cylindrical module. Air flows through the outer dehydration unit, becomes dried, and is then directed, in an opposite direction, through the separation unit. The permeate gas from the separation unit serves as a sweep gas for the dehydration unit. A portion of dried gas produced by the dehydration unit may be used as a sweep gas for the separation unit, and also for the dehydration unit. The module makes it feasible to dry and separate air using a device which occupies relatively little space, and which is therefore especially suited for use in aircraft and in other cramped environments.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: March 19, 2013
    Assignee: Generon IGS, Inc.
    Inventors: Frederick L. Coan, Jeffrey C. Schletz
  • Patent number: 8317899
    Abstract: A shipboard system provides dry, oil-free utility air and inert gas for use on a marine vessel. A compressor converts ambient air into a pressurized air stream. The air stream is cooled by heat exchange with sea water in the vicinity of the vessel. The air stream is then dried in a dehydration membrane module, and some of the product of the dehydration module is taken for use as utility air. The remainder of the dried air is passed through an air separation module which includes a polymeric membrane. The product of the air separation module includes a nitrogen-enriched gas which is used as an inert gas on the vessel. The compressor is the only mechanically moving component of the system.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: November 27, 2012
    Assignee: Generon IGS, Inc.
    Inventors: Thomas J. Jeffers, Marc Straub
  • Publication number: 20120205126
    Abstract: Water is removed from a natural gas well by the use of nitrogen, which is produced by a non-cryogenic unit at the site of the well. A cylindrical casing is positioned over the well. A tubing, disposed within the casing, is aligned over the well bore. Nitrogen is selectively introduced into either the space between the tubing and the casing, or into the tubing, so as to displace water from within the tubing or the casing, respectively. The water is directed to a storage tank at the site of the well. Nitrogen is purged from the lines, and the well is ready to resume production.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 16, 2012
    Applicant: GENERON IGS, INC.
    Inventors: Daniel Chenoweth, John Font