Patents Assigned to Illumina, Inc.
  • Publication number: 20240150753
    Abstract: Described herein are compositions and methods for preparing double-stranded complementary DNA (cDNA) from RNA. In some embodiments, these methods allow isothermal preparation of cDNA. In some embodiments, these methods allow mesophilic or thermostable preparation of cDNA. Also described herein are compositions and methods for preparing cDNA and a library of double-stranded cDNA fragments in a single reaction vessel.
    Type: Application
    Filed: September 27, 2023
    Publication date: May 9, 2024
    Applicant: Illumina, Inc.
    Inventors: Allison Yunghans, Angelica Marie Barr Schalembier, Kayla Busby, Stephen M. Gross, Robert Scott Kuersten, Frederick W. Hyde
  • Publication number: 20240150508
    Abstract: In some examples, novel photochemically-reversible hydrogels and nanogel particles are described comprising copolymer chains including at least one reactive alkene or reactive 1,4-diene end group capable of [2+2] or [2+2+2+2] photodimerization, respectively, at wavelengths >270 nm. In various examples, the photochemically-reversible hydrogels comprise copolymer chains including at least one —N3, —C?CH or —CO2H end group for dual functionality and/or pH responsiveness. For nucleic acid sequencing, amplification primers are grafted to photochemically-reversible hydrogels or nanogel particles reversibly bound to surfaces within a flow cell. After sequencing is complete, the photochemically-reversible hydrogel or nanogel particles is/are removable from the flow cell surfaces by irradiation, enabling the flow cell to be reusable.
    Type: Application
    Filed: October 6, 2023
    Publication date: May 9, 2024
    Applicants: Illumina, Inc., Illumina Cambridge Limited, Illumina Singapore Pte. Ltd.
    Inventors: Nam Nguyen, Xavier von Hatten, Wayne George, Gianluca Artioli, Brian Mather, Johan Basuki, Shima Gholizadeh
  • Patent number: 11976322
    Abstract: The current document discusses electromechanical sequence detectors that transduce changes in the shape of a shape-change sensor component into an electrical signal from which one or more derived values are generated. In a disclosed implementation, the sequence-detection system comprises a mechanical-change sensor that changes shape when specifically interacting with entities within a target, a shape-to-signal-transduction component that transduces changes in the shape of the mechanical-change sensor into an electrical signal, an analysis subsystem that determines the types of entities within the target using the electrical signal, and a control subsystem that continuously monitors operational characteristics of the sequence-detection system and adjusts sequence-detection system operational parameters.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: May 7, 2024
    Assignee: ILLUMINA, INC.
    Inventors: Jeffrey G. Mandell, Kevin L. Gunderson, Michael Gregory Keehan, Erin Christine Garcia
  • Patent number: 11977213
    Abstract: An imaging system may include a sample stage comprising a surface to support a sample container, the sample container including a sample having a plurality of sample locations; an optical stage to image the sample at the plurality of sample locations; one or more actuators physically coupled to at least one of the sample stage and the optical stage to move the sample stage relative to the optical stage to focus the optical stage onto a current sample location of the plurality of sample locations; a first light source to illuminate the current sample location; a second light source to project a pair of spots on a next sample location of the plurality of sample locations; and a controller to determine, based on an image of the pair of spots projected on the next sample location, a focus setting for the next sample location.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: May 7, 2024
    Assignee: ILLUMINA, INC.
    Inventors: Ashkan Arianpour, John Bailey, Dustin Blair, Xiangling (Steve) Chen, Stanley S. Hong, Simon Prince, Merek C. Siu, Chunhong (Allen) Zhou, Danilo Condello
  • Patent number: 11975325
    Abstract: An example of a kit includes a flow cell assembly. The flow cell assembly includes a reaction chamber, a temperature controlled flow channel in selective fluid communication with an inlet of the reaction chamber, and a filter positioned in the temperature controlled flow channel. The reaction chamber includes depressions separated by interstitial regions and capture primers attached within each of the depressions. The filter is i) to block concentrated biological sample-polymer complexes generated in the temperature controlled flow channel at a first temperature, and ii) to allow passage of concentrated biological sample and polymer released from the complexes in the temperature controlled flow channel at a second temperature.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: May 7, 2024
    Assignee: Illumina, Inc.
    Inventors: Sean M. Ramirez, Anmiv Prabhu, Rigo Pantoja, Michelle Higgins
  • Patent number: 11976271
    Abstract: The present disclosure is related to methods and materials for depleting unwanted RNA species from a nucleic acid sample. In particular, the present disclosure describes how to remove unwanted rRNA, tRNA, mRNA or other RNA species that could interfere with the analysis, manipulation and study of target RNA molecules in a sample.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: May 7, 2024
    Assignee: Illumina, Inc.
    Inventors: Scott Kuersten, Frederick Hyde, Asako Tetsubayashi
  • Patent number: 11975328
    Abstract: The assembly includes a docking console and a manifold. The docking console includes a cartridge support surface having a first end and a second end. The manifold has one or more wells defined therein. The docking console further includes a manifold retention bracket to releasably hold the manifold against a fluid cartridge supported on the cartridge support surface at an interface position such that the one or more wells are in fluid communication with the fluid cartridge and a biased seal bar to press the fluid cartridge against the manifold held by the manifold retention bracket. A hydrophilic porous frit disposed within at least one of the wells and is to permit liquid to flow through the outlet aperture but prevent gas from passing through the outlet aperture.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: May 7, 2024
    Assignees: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Bradley Kent Drews, Gudrun Stengel, James Christopher Blake, Mohammed Kafeel Ahamed, Michael Steven Becker, Michael Dangelo, Mark J. Nibbe, Daniel L. Fuller, Oliver Jon Miller
  • Publication number: 20240141427
    Abstract: Presented herein are altered polymerase enzymes for improved incorporation of nucleotides and nucleotide analogues, in particular altered polymerases that maintain low error rate, low phasing rate, or increased incorporation rate for a second generation ffN under reduced incorporation times, as well as methods and kits using the same.
    Type: Application
    Filed: September 27, 2023
    Publication date: May 2, 2024
    Applicant: ILLUMINA, INC.
    Inventors: Misha Golynskiy, Rahman Rahman Pour, Jiawen Li, Ryan Craig, Hamed Tabatabaei Ghomi, Saurabh Nirantar, Hsu Myat Noe, Lin Hui Chang, Yvonne Devadas, Jing Wen Lim, Kay Klausing, Humberto Rojo, Eric Murtfeldt, Chris Garcia
  • Patent number: 11970734
    Abstract: A composition includes a nanopore including first and second sides and an aperture, nucleotides each including an elongated tag, and a first polynucleotide that is complementary to a second polynucleotide. A polymerase can be disposed adjacent to the first side of the nanopore and configured to add nucleotides to the first polynucleotide based on a sequence of the second polynucleotide. A permanent tether can include a head region anchored to the polymerase, a tail region, and an elongated body disposed therebetween that occurs in the aperture of the nanopore. A first moiety can be disposed on the elongated body that binds to the elongated tag of a first nucleotide upon which the polymerase is acting. A reporter region can be disposed on the elongated body that indicates when the first nucleotide is complementary or is not complementary to a next nucleotide in the sequence of the second polynucleotide.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 30, 2024
    Assignee: Illumina, Inc.
    Inventors: Kevin L Gunderson, Jeffrey G. Mandell
  • Patent number: 11965158
    Abstract: Embodiments provided herein relate to methods and compositions for next generation sequencing. Some embodiments include the preparation of a template library from a target nucleic acid using one-sided transposition, sequencing the template library, and capturing the contiguity information.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: April 23, 2024
    Assignee: Illumina, Inc.
    Inventors: Frank J. Steemers, Jeffrey S. Fisher, Kevin L. Gunderson, Sasan Amini, Christian Gloeckner
  • Publication number: 20240124914
    Abstract: This disclosure relates to novel thermophilic amplification compositions and methods, in particular for use in nucleic acid amplification and sequencing.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 18, 2024
    Applicant: Illumina, Inc.
    Inventor: Justin Robbins
  • Publication number: 20240124929
    Abstract: This disclosure relates to novel amplification compositions and methods, in particular for use in nucleic acid amplification and sequencing, preferably that do not involve reagents that are thermophilic.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 18, 2024
    Applicant: Illumina, Inc.
    Inventor: Justin Robbins
  • Patent number: 11961593
    Abstract: The technology disclosed relates to artificial intelligence-based determination of analyte data for base calling. In particular, the technology disclosed uses input image data that is derived from a sequence of images. Each image in the sequence of images represents an imaged region and depicts intensity emissions indicative of one or more analytes and a surrounding background of the intensity emissions at a respective one of a plurality of sequencing cycles of a sequencing run. The input image data comprises image patches extracted from each image in the sequence of images. The input image data is processed through a neural network to generate an alternative representation of the input image data. The alternative representation is processed through an output layer to generate an output indicating properties of respective portions of the imaged region.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: April 16, 2024
    Assignee: Illumina, Inc.
    Inventors: Anindita Dutta, Dorna Kashefhaghighi, Amirali Kia
  • Publication number: 20240117426
    Abstract: In some examples, novel nanogel particles are described having dual functionality, temperature responsiveness and pH responsiveness. For nucleic acid sequencing, amplification primers are grafted to nanogel particles to form primer-grafted nanogel particles, and the primer-grafted nanogel particles are captured onto surfaces within a flow cell. Within flow cells such as used in SBS nucleic acid sequencing, each primer-grafted nanogel particle functions as a nano-well in the flow cell, thus eliminating the need for nano-wells in some examples.
    Type: Application
    Filed: September 18, 2023
    Publication date: April 11, 2024
    Applicants: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Nam Nguyen, Xavier von Hatten, Will Tovey, Andrew Brown, Wayne George, Eric Brustad, Gianluca Artioli
  • Publication number: 20240118203
    Abstract: The motion of a mechanical stage may be directed in x-, y-, and/or z-dimensions such that excitation of a resonant frequency f is reduced. In particular, once a resonant frequency f is identified, the acceleration of the stage in the x-, y-, and/or z-dimensions may divided into an even number of acceleration segments or intervals, with the second of each pair of acceleration segments starting 1/(2f) seconds after the start of the initial acceleration segment. The acceleration intervals may be defined by a start time, an amplitude profile, and/or a time duration. In some implementations, the amplitude and time duration of each acceleration pulse may be different. The amplitude and time duration of acceleration steps may be determined and adjusted to compensate for the particular resonance frequency of an individual system, and programmed into a controller for the stage using motor programming controls.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 11, 2024
    Applicant: Illumina, Inc.
    Inventors: Shavinesh Sukesh, Chia-Hsi Liu, Gregory Holst, Ahmed Okasha, Kurt Danielson, John Earney
  • Publication number: 20240117424
    Abstract: Reusable flow cells for sequencing which exhibit signal intensity retention over numerous use cycles, the active surface of which contains poly-azide functional moieties, methods of treating flow cells surfaces with reagents to provide such poly-azide functional moieties, and reagents therefor.
    Type: Application
    Filed: September 12, 2023
    Publication date: April 11, 2024
    Applicant: Illumina, Inc.
    Inventors: Jonathan Boutell, Wayne George, Xiaolin Wu
  • Patent number: 11953464
    Abstract: A device for base calling is provided. The device includes a receptacle configured to hold a biosensor having a sample surface holding a plurality of clusters during a sequence of sampling events, an array of sensors sensing information from clusters disposed in corresponding pixel areas of the sample surface during the sampling events and generate sequences of pixel signals and a communication port configured to output the sequences of pixel signals. The device also includes a signal processor coupled to the communication port and configured to receive and process at least one pixel signal in the sequences of pixel signals that mixes light gathered from at least two clusters in a corresponding pixel area, and to base call each of the at least two clusters using the at least one pixel signal.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: April 9, 2024
    Assignee: Illumina, Inc.
    Inventors: Dietrich Dehlinger, Ali Agah, Tracy Helen Fung, Emrah Kostem
  • Patent number: 11952619
    Abstract: An array includes a support including a plurality of discrete wells, a gel material positioned in each of the plurality of discrete wells, and a quality control tracer grafted to the gel material in each of the plurality of discrete wells. The quality control tracer comprises (a) a cleavable nucleotide sequence comprising a cleavage site and (b) a detectable label; and in some aspects, is a cleavable nucleotide sequence with a detectable label and a non-reactive nucleotide sequence or a primer nucleotide sequence.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: April 9, 2024
    Assignee: Illumina, Inc.
    Inventors: Peyton Shieh, John M. Beierle, Michael S. Graige, Alexander Fuhrmann, Randall Smith, Wei Wei, Naiqian Zhan
  • Patent number: 11951477
    Abstract: An example method includes connecting a flow cell to an instrument. The flow cell includes a flow channel including a manifold section having a manifold section swept volume and a detection section having a detection section swept volume. A ratio of the detection section swept volume to manifold section swept volume is at least 10 to 1. A first reagent is pumped through the flow channel. A first chemical reaction is performed between the first reagent and analytes positioned in the detection section. A subsequent reagent is pumped through the flow channel to flush out the remaining reagent. A concentration of at least 99.95 percent of reagent positioned in the detection section is the subsequent reagent, after pumping a total volume of the subsequent reagent through the flow channel that is equal to or less than 2.5 times a total swept volume of the manifold section plus the detection section.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Illumina, Inc.
    Inventors: Sz-Chin Lin, Jay Taylor, Minsoung Rhee, Jennifer Foley, Wesley Cox-Muranami, Cyril Delattre, Tarun Khurana, Paul Crivelli
  • Publication number: 20240110221
    Abstract: This disclosure relates to novel amplification compositions and methods, in particular for use in sequencing.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 4, 2024
    Applicant: Illumina, Inc.
    Inventor: Justin Robbins