Abstract: This disclosure provides a method of determining a sequence of nucleotides for a nucleic acid template. The method can include the steps of contacting the nucleic acid template with a conformationally labeled polymerase and at least four different nucleotide species under conditions wherein the conformationally labeled polymerase catalyzes sequential addition of the nucleotide species to form a nucleic acid complement of the nucleic acid template, wherein the sequential addition of each different nucleotide species produces a conformational signal change from the conformationally labeled polymerase and wherein the rate or time duration for the conformational signal change is distinguishable for each different nucleotide species; detecting a series of changes in the signal from the conformationally labeled polymerase under the conditions; and determining the rates or time durations for the changes in the signal, thereby determining the sequence of nucleotides for the nucleic acid template.
Type:
Grant
Filed:
April 19, 2016
Date of Patent:
January 9, 2018
Assignee:
ILLUMINA, INC.
Inventors:
Molly He, Cheng-Yao Chen, Eric Kool, Mostafa Ronaghi, Michael Previte, Rigo Pantoja
Abstract: A method of inhibiting light-induced degradation of nucleic acids includes irradiating a portion of the nucleic acids in the presence of a detection solution comprising a polyphenolic compound. A method of detecting a nucleic acid having a fluorescent tag includes irradiating at least a portion of the nucleic acid with light of a suitable wavelength to induce a fluorescence emission and detecting the fluorescence emission. Optionally, the polyphenolic compound is gallic acid, a lower alkyl ester thereof, or mixtures thereof. A kit includes one or more nucleotides, an enzyme capable of catalyzing incorporation of the nucleotides into a nucleic acid strand and a polyphenolic compound suitable for preparing a detection solution.
Type:
Grant
Filed:
June 3, 2015
Date of Patent:
January 2, 2018
Assignee:
ILLUMINA, INC.
Inventors:
Kay Klausing, Min-Jui Richard Shen, John Moore, Vincent Peter Smith, Kevin Hall
Abstract: A method for detecting nucleic acids by (a) providing a sample having target nucleic acids, each nucleic acid having contiguous first, second, and third domains; (b) contacting the sample with probe sets to form hybridization complexes, wherein each probe set includes (i) a first probe having a sequence that is complementary to the first domain; and (ii) a second probe having a sequence substantially complementary to the third domain; (c) extending the first probes along the second domains of the complexes while the complexes are immobilized on a solid support; (d) ligating the extended first probes to the second probes to form templates; (e) amplifying the templates with primers that are complementary to the first and second priming sequences to produce amplicons; and (f) detecting the amplicons on the surface of a nucleic acid array.
Type:
Grant
Filed:
November 13, 2014
Date of Patent:
December 26, 2017
Assignee:
Illumina, Inc.
Inventors:
Arnold Oliphant, John R. Stuelpnagel, Mark S. Chee, Scott L. Butler, Jian-Bing Fan, Min-Jui Richard Shen
Abstract: Presented herein are polymerase enzymes for improved incorporation of nucleotide analogues, in particular nucleotides which are modified at the 3? sugar hydroxyl, as well as methods and kits using the same.
Abstract: Fluidic cartridge including a liquid container having a reservoir configured to hold a liquid. The liquid container includes an interior surface. The fluidic cartridge also includes a transfer tube that extends from the interior surface to a distal end. The distal end includes a fluidic port that is in flow communication with the reservoir through the transfer tube. The transfer tube has a piercing segment that includes the distal end. The fluidic cartridge also includes a movable seal that is engaged to the piercing segment of the transfer tube and configured to slide along the piercing segment from a closed position to a displaced position during a mating operation. The movable seal blocks flow of the liquid through the fluidic port when in the closed position. The piercing segment extends through the movable seal when in the displaced position.
Type:
Grant
Filed:
September 18, 2015
Date of Patent:
December 12, 2017
Assignee:
Illumina, Inc.
Inventors:
Paul O. Ramstad, Majid Aghababazadeh, Behnam Javanmardi
Abstract: Flexible authentication technologies customized to particular tenants of a data center network can be implemented. For example, an administrator can specify a primary authentication server and specify at which data centers different applications are to be hosted for a given tenant. End users can be shielded from the complexities of implementing such configuration details. For example, single sign-on authentication can be implemented, even when applications are configured to be hosted in different data centers. Enterprise tenants can thus control where applications are hosted and enforce data containment scenarios without encumbering users with additional tasks. Collaboration and application-to-application authentication can be achieved.
Type:
Application
Filed:
June 5, 2017
Publication date:
December 7, 2017
Applicant:
Illumina, Inc.
Inventors:
Milan Karangutkar, Prabhu Palanisamy, Satnam Alag
Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
Type:
Application
Filed:
August 8, 2017
Publication date:
November 23, 2017
Applicant:
Illumina, Inc.
Inventors:
Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin L. Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
Abstract: The invention relates to methods and systems for sequencing and constructing a high resolution physical map of a polynucleotide. In accordance with the invention, nucleotide sequences are determined at the ends of restriction fragments produced by a plurality of digestions with a plurality of combinations of restriction endonucleases so that a pair of nucleotide sequences is obtained for each restriction fragment. A physical map of the polynucleotide is constructed by ordering the pairs of sequences by matching the identical sequences among the pairs.
Abstract: The invention provides imaging apparatus and methods useful for obtaining a high resolution image of a sample at rapid scan rates. A rectangular detector array having a horizontal dimension that is longer than the vertical dimension can be used along with imaging optics positioned to direct a rectangular image of a portion of a sample to the rectangular detector array. A scanning device can be configured to scan the sample in a scan-axis dimension, wherein the vertical dimension for the rectangular detector array and the shorter of the two rectangular dimensions for the image are in the scan-axis dimension, and wherein the vertical dimension for the rectangular detector array is short enough to achieve confocality in a single axis.
Type:
Grant
Filed:
September 18, 2014
Date of Patent:
November 14, 2017
Assignee:
ILLUMINA, INC.
Inventors:
Wenyi Feng, Theofilos Kotseroglou, Mark Wang, Alexander Triener, Diping Che, Robert Kain
Abstract: Presented herein are methods and compositions for thermostable DNA polymerases that may be used to improve the PCR process and to improve the results obtained when using a thermostable DNA polymerase in other recombinant techniques such as DNA sequencing, nick-translation, and reverse transcription.
Abstract: The present disclosure provides a novel approach for shifting or distributing various information (e.g., protocols, analysis methods, sample preparation data, sequencing data, etc.) to a cloud-based network. For example, the techniques relate to a cloud computing environment configured to receive this information from one or more individual sample preparation devices, sequencing devices, and/or computing systems. In turn, the cloud computing environment may generate information for use in the cloud computing environment and/or to provide the generated information to the devices to guide a genomic analysis workflow. Further, the cloud computing environment may be used to facilitate the sharing of sample preparation protocols for use with generic sample preparation cartridges and/or monitoring the popularity of the sample preparation protocols.
Type:
Grant
Filed:
March 8, 2013
Date of Patent:
October 31, 2017
Assignee:
ILLUMINA, INC.
Inventors:
Min-Jui Richard Shen, Charles Hsuan Lin
Abstract: A technique for sequencing nucleic acids in an automated or semi-automated manner is disclosed. Sample arrays of a multitude of nucleic acid sites are processed in multiple cycles to add nucleotides to the material to be sequenced, detect the nucleotides added to sites, and to de-block the added nucleotides of blocking agents and tags used to identify the last added nucleotide. Multiple parameters of the system are monitored to enable diagnosis and correction of problems as they occur during sequencing of the samples. Quality control routines are run during sequencing to determine quality of samples, and quality of the data collected.
Type:
Grant
Filed:
November 12, 2014
Date of Patent:
October 24, 2017
Assignee:
ILLUMINA, INC.
Inventors:
Robert C. Kain, David L. Heiner, Chanfeng Zhao, Kevin Gunderson
Abstract: Presented herein are polymerase enzymes for improved incorporation of nucleotide analogues, in particular nucleotides which are modified at the 3? sugar hydroxyl, as well as methods and kits using the same.
Type:
Application
Filed:
June 1, 2017
Publication date:
October 19, 2017
Applicant:
Illumina, Inc.
Inventors:
Erin Bomati, Michael Previte, Matthew William Kellinger, Cheng-Yao Chen, Molly He
Abstract: Presented herein are transposase enzymes and reaction conditions for improved fragmentation and tagging of nucleic acid samples, in particular altered transposases and reaction conditions which exhibit improved insertion sequence bias, as well as methods and kits using the same.
Type:
Grant
Filed:
April 15, 2015
Date of Patent:
October 17, 2017
Assignee:
ILLUMINA, INC.
Inventors:
Christian Gloeckner, Amirali Kia, Erin Bomati, Molly He, Haiying Li Grunenwald, Scott Kuersten, Trina Faye Osothprarop, Darin Haskins, Joshua Burgess, Anupama Khanna, Daniel Schlingman, Ramesh Vaidyanathan
Abstract: System configured to conduct designated reactions for biological or chemical analysis. The system includes a liquid-exchange assembly comprising an assay reservoir for holding a first liquid, a receiving cavity for holding a second liquid that is immiscible with respect to the first liquid, and an exchange port fluidically connecting the assay reservoir and the receiving cavity. The system also includes a pressure activator that is operably coupled to the assay reservoir of the liquid-exchange assembly. The pressure activator is configured to repeatedly exchange the first and second liquids by (a) flowing a designated volume of the first liquid through the exchange port into the receiving cavity and (b) flowing a designated volume of the second liquid through the exchange port into the assay reservoir. The system also includes a fluidic system that is in flow communication with the liquid-exchange assembly.
Type:
Grant
Filed:
May 14, 2015
Date of Patent:
October 10, 2017
Assignee:
Illumina, Inc.
Inventors:
Dale Buermann, Sebastian Bohm, Alexander Hsiao
Abstract: A fluidic system that includes a reagent manifold comprising a plurality of channels configured for fluid communication between a reagent cartridge and an inlet of a flow cell; a plurality of reagent sippers extending downward from ports in the manifold, each of the reagent sippers configured to be placed into a reagent reservoir in a reagent cartridge so that liquid reagent can be drawn from the reagent reservoir into the sipper; at least one valve configured to mediate fluid communication between the reservoirs and the inlet of the flow cell. The reagent manifold can also include cache reservoirs for reagent re-use.