Patents Assigned to Illumina, Inc.
  • Publication number: 20230295711
    Abstract: Provided herein are compositions and methods for sequencing using at least altering electrical characteristics of polymer bridges. In some examples, the bridges may span the space between first and second electrodes and may include first and second polymer chains that are hybridized to one another. A plurality of nucleotides may be coupled to corresponding labels. A polymerase may be coupled to the bridge and may add nucleotides to a first polynucleotide using at least a sequence of a second polynucleotide. The labels corresponding to those nucleotides respectively may alter hybridization between the first and second polymer chains. Detection circuitry may detect a sequence in which the polymerase adds the nucleotides to the first polynucleotide using at least changes in an electrical signal through the bridge, the changes being responsive to the respective alterations of hybridization using the labels corresponding to those nucleotides.
    Type: Application
    Filed: June 24, 2021
    Publication date: September 21, 2023
    Applicant: Illumina, Inc.
    Inventors: Jeffrey Mandell, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20230298339
    Abstract: The technology disclosed relates to state-based base calling. In particular, the technology disclosed relates to incorporating state information about data from previous sequencing cycles into the analysis of data from a current sequencing cycle when generating a base call for the current sequencing cycle. For example, when generating a base call for an Nth sequencing cycle, the technology disclosed can incorporate into the base calling logic state information about data from sequencing cycles 1 to N?1.
    Type: Application
    Filed: September 14, 2022
    Publication date: September 21, 2023
    Applicants: Illumina, Inc., Illumina Software, Inc.
    Inventors: Gavin Derek PARNABY, Eric Jon OJARD, Dorna KASHEFHAGHIGHI
  • Publication number: 20230296516
    Abstract: Artificial intelligence driven signal enhancement of sequencing images enables enhanced sequencing by synthesis that determines a sequence of bases in genetic material with any one or more of: improved performance, improved accuracy, and/or reduced cost. A training set of images taken at unreduced and reduced power levels used to excite fluorescence during sequencing by synthesis is used to train a neural network to enable the neural network to recover enhanced images, as if taken at the unreduced power level, from unenhanced images taken at the reduced power level.
    Type: Application
    Filed: February 17, 2023
    Publication date: September 21, 2023
    Applicants: Illumina, Inc., Illumina Software, Inc.
    Inventors: Anindita Dutta, Michael Gallaspy, Jeffrey Gau, Stanley Hong, Aathavan Karunakaran, Simon Prince, Merek Siu, Yina Wang, Rishi Verma
  • Patent number: 11761035
    Abstract: The disclosed embodiments concern methods, apparatus, systems and computer program products for determining sequences of interest using unique molecular index sequences that are uniquely associable with individual polynucleotide fragments, including sequences with low allele frequencies and long sequence length. In some implementations, the unique molecular index sequences include variable-length nonrandom sequences. In some implementations, the unique molecular index sequences are associated with the individual polynucleotide fragments based on alignment scores indicating similarity between the unique molecular index sequences and subsequences of sequence reads obtained from the individual polynucleotide fragments. System, apparatus, and computer program products are also provided for determining a sequence of interest implementing the methods disclosed.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: September 19, 2023
    Assignee: Illumina, Inc.
    Inventors: Kevin Wu, Chen Zhao, Han-Yu Chuang, Alex So, Stephen Tanner, Stephen M. Gross
  • Patent number: 11760994
    Abstract: Provided is a method, including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments. Also provided is a method including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: September 19, 2023
    Assignees: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Maria Candelaria Rogert Bacigalupo, Frank Steemers, Jeffrey Fisher, Andrew Slatter, Lewis Kraft, Niall Gormley, M. Shane Bowen
  • Patent number: 11760772
    Abstract: Embodiments of the present disclosure include methods and compositions for functionalizing molecules, such as oligonucleotides, with functional groups, including polyhistidine tags useful in affinity methods. Some embodiments include methods for modifying and purifying complex mixtures of molecules by exchange of functional tags.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: September 19, 2023
    Assignee: Illumina, Inc.
    Inventors: Frank J. Steemers, Kevin L. Gunderson, Kerri York, Ryan Christopher Smith
  • Publication number: 20230287476
    Abstract: Degradable polyester bead are described comprising a plurality of transposome complexes immobilized to the surface thereof, wherein each transposome complex comprises a transposase bound to a first polynucleotide and a second polynucleotide, wherein the first polynucleotide comprises a 3? portion comprising a transposon end sequence and a tag, and the second polynucleotide comprises a 5? portion that is complementary to and hybridized to the transposon end sequence, and wherein the polyester bead has a melting point of from 50° C. to 65° C. Flow cells and methods related to these polyester beads are described. Also described herein are compositions comprising a bead and at least one nanoparticle and methods of use of such compositions comprising transposome complexes immobilized to nanoparticles.
    Type: Application
    Filed: January 6, 2023
    Publication date: September 14, 2023
    Applicant: Illumina, Inc.
    Inventors: Yir-Shyuan Wu, Tarun Kumar Khurana, Elisabet Rosàs-Canyelles, Fei Shen, Jeffrey Brodin, Lena Storms, Jeffrey S. Fisher
  • Patent number: 11753685
    Abstract: The present invention includes methods and materials for use in the detection preeclampsia and/or determining an increased risk for preeclampsia in a pregnant female, the method including identifying in a biosample obtained from the pregnant women a plurality of circulating RNA (C-RNA) molecules.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: September 12, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Sarah E. Shultzaberger, Fiona Kaper, Sarah Kinnings, Suzanne Rohrback, Carlo Randise-Hinchliff
  • Publication number: 20230279385
    Abstract: A variety of different types of targeted transposome complexes are described herein that may be used to mediate sequence-specific targeted transposition of nucleic acids.
    Type: Application
    Filed: February 16, 2023
    Publication date: September 7, 2023
    Applicants: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Frank J. STEEMERS, Jonathan Mark BOUTELL, Pietro GATTI LAFRANCONI, Oliver Jon MILLER, Emma BELL, Sebastien Georg Gabriel RICOULT, Niall Anthony GORMLEY, Kim SCHNEIDER
  • Patent number: 11749380
    Abstract: The technology disclosed relates to artificial intelligence-based base calling. The technology disclosed relates to accessing a progression of per-cycle analyte channel sets generated for sequencing cycles of a sequencing run, processing, through a neural network-based base caller (NNBC), windows of per-cycle analyte channel sets in the progression for the windows of sequencing cycles of the sequencing run such that the NNBC processes a subject window of per-cycle analyte channel sets in the progression for the subject window of sequencing cycles of the sequencing run and generates provisional base call predictions for three or more sequencing cycles in the subject window of sequencing cycles, from multiple windows in which a particular sequencing cycle appeared at different positions, using the NNBC to generate provisional base call predictions for the particular sequencing cycle, and determining a base call for the particular sequencing cycle based on the plurality of base call predictions.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: September 5, 2023
    Assignee: Illumina, Inc.
    Inventors: Anindita Dutta, Gery Vessere, Dorna Kashefhaghighi, Kishore Jaganathan, Amirali Kia
  • Patent number: 11747263
    Abstract: Flow cells and corresponding methods are provided. The flow cells may include a support frame with top and back sides, and at least one cavity extending from the top side. The flow cells may include at least one light detection device with an active area disposed within the at least one cavity. The flow cells may include a support material disposed within the at least one cavity between the support frame and the periphery of the at least one light detection device coupling them together. The flow cells may include a lid extending over the at least one light detection device and coupled to the support frame about the periphery of the at least one light detection device. The lid and at least a top surface of the at least one light detection device form a flow channel therebetween.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: September 5, 2023
    Assignee: Illumina, Inc.
    Inventors: Arnaud Rival, Ali Agah, Tracy H. Fung, Dietrich Dehlinger, Poorya Sabounchi, Tarun Khurana, Craig M. Ciesla, M. Shane Bowen
  • Patent number: 11740255
    Abstract: A system includes a droplet actuator having a droplet-operation gap between top and bottom substrates, a reservoir(s) external to and coupled to the droplet actuator, the reservoir(s) sized for a large-volume fluid, and pressure source(s) external to the droplet actuator and coupled to the at least one reservoir. Operation of the system includes filling the reservoir(s) with a large volume of fluid(s), dispensing droplet(s) of the fluid(s) to the droplet-operation gap using the pressure source(s) as part of performing a droplet operation(s). Movement of the droplet(s) may be effectuated by activating the droplet actuator.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 29, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Jennifer Olivia Foley, Darren Segale, Cyril Delattre
  • Patent number: 11739372
    Abstract: A method for spatially tagging nucleic acids of a biological specimen, including steps of (a) providing a solid support comprising different nucleic acid probes that are randomly located on the solid support, wherein the different nucleic acid probes each includes a barcode sequence that differs from the barcode sequence of other randomly located probes on the solid support; (b) performing a nucleic acid detection reaction on the solid support to locate the barcode sequences on the solid support; (c) contacting a biological specimen with the solid support that has the randomly located probes; (d) hybridizing the randomly located probes to target nucleic acids from portions of the biological specimen; and (e) modifying the randomly located probes that are hybridized to the target nucleic acids, thereby producing modified probes that include the barcode sequences and a target specific modification, thereby spatially tagging the nucleic acids of the biological specimen.
    Type: Grant
    Filed: February 9, 2023
    Date of Patent: August 29, 2023
    Assignees: Spatial Transcriptomics AB, Illumina, Inc.
    Inventors: Jonas Frisen, Patrik Stahl, Joakim Lundeberg, Gordon M. Cann, Leila Bazargan, Alex Aravanis
  • Patent number: 11732301
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 22, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Jeffrey G Mandell, Kevin L Gunderson, Jingwei Bai, Liangliang Qiang, Bradley Baas
  • Publication number: 20230260096
    Abstract: Artificial intelligence driven enhancement of motion blurred sequencing images enables enhanced sequencing that determines a sequence of bases in genetic material with any one or more of: improved performance, improved accuracy, and/or reduced cost. A training set of images taken after unreduced and reduced movement settling times during sequencing is used to train a neural network to enable the neural network to recover enhanced images, as if taken after the unreduced movement settling time, from unenhanced images taken after the reduced movement settling time.
    Type: Application
    Filed: February 17, 2023
    Publication date: August 17, 2023
    Applicants: Illumina, Inc., Illumina Software, Inc.
    Inventors: Simon Prince, Stanley Hong, Michael Gallaspy, Merek Siu, Jeffrey Gau, Anindita Dutta, Aathavan Karunakaran, Yina Wang, Rishi Verma
  • Patent number: 11724258
    Abstract: A method includes engaging a well of a cartridge with a flow sensor of an instrument. The cartridge includes: a rotary valve including a rotatable port and a center port; the well in fluid communication with a channel, the channel including a channel port that the rotatable port is to align to in order to receive fluid from the well; and a flowcell including an inlet gasket in fluid communication with the center port. A source of pressurized air is connected to the flow sensor in order to establish a mass flow of air through a flow path. The flow path extends through one of the flow sensor, the channel, the rotary valve, and the flowcell. The mass flow of air through the flow path is measured with the flow sensor. It is determined if there is one of an air leak and an air blockage within the flow path.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: August 15, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Sz-Chin Steven Lin, Richard Lemoine, Rajagopal Panchapakesan, Wesley A. Cox-Muranami, Darren Segale
  • Patent number: D998709
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: September 12, 2023
    Assignee: Illumina, Inc.
    Inventors: Christopher Morgan Dye, Gi Youn Lee, Max Warren Pollock, Vincent Russell Derama, Nahida Lebbos, Raymond Lawrence Oyung, Madeline Uebelhor, Jack Godfrey Wood, John Tate Sager, Jacob Dessau
  • Patent number: D998710
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: September 12, 2023
    Assignee: Illumina, Inc.
    Inventors: Christopher Morgan Dye, Gi Youn Lee, Max Warren Pollock, Vincent Russell Derama, Nahida Lebbos, Raymond Lawrence Oyung, Madeline Uebelhor, Jack Godfrey Wood, John Tate Sager, Jacob Dessau
  • Patent number: D999425
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: September 19, 2023
    Assignee: Illumina, Inc.
    Inventors: Jay Taylor, James Osmus, Philip Paik, Jack Godfrey Wood, Max Pollock
  • Patent number: D999827
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: September 26, 2023
    Assignee: Illumina, Inc.
    Inventors: Christopher Morgan Dye, Gi Youn Lee, Max Warren Pollock, Vincent Russell Derama, Nahida Lebbos, Raymond Lawrence Oyung, Madeline Uebelhor, Jack Godfrey Wood, John Tate Sager, Jacob Dessau