Patents Assigned to IMDS, Inc.
  • Publication number: 20110040387
    Abstract: A knee prosthesis including a femoral implant, a tibial implant, a tibial insert and a cam post. The femoral implant is secured to a femur and has a cam feature and condyles. The tibial implant is secured to a tibia. The tibial insert comprises a medial cavity with a rotational axis. The tibial insert has articulating surfaces that match the contours of the condyles of the femoral implant. The tibial insert has a medial boss that aligns with the medial cavity allowing it to rotate about the rotational axis. A cam post is secured to the tibial implant and passes through a channel of the tibial insert providing anterior and posterior stops for the rotation of the tibial insert about the rotational axis. The cam post interacts with the femoral implant cam feature and, with the tibial insert, allows more anatomically correct rollback and femoral external rotation during knee flexion.
    Type: Application
    Filed: October 27, 2009
    Publication date: February 17, 2011
    Applicant: IMDS, Inc.
    Inventors: Michael D. Ries, Mark Mooradian, Daniel F. Jusitn, Joshua A. Butters
  • Publication number: 20100204796
    Abstract: A system for spinal surgery includes a prosthesis comprising a plurality of bone anchors which engage an intervertebral construct for fusion or motion preservation. The fusion construct comprises a spacer optionally encircled by a jacket. The motion preservation construct may comprise an articulating disc assembly or an elastomeric disc assembly. Any of the constructs may occupy the intervertebral disc space between adjacent vertebrae after removal of an intervertebral disc. The anchors slidingly engage the construct to securely fix the prosthesis to the vertebrae. The anchors and jacket of the fusion construct provide a continuous load path across opposite sides of the prosthesis so as to resist antagonistic motions of the spine.
    Type: Application
    Filed: December 17, 2009
    Publication date: August 12, 2010
    Applicant: IMDS, INC.
    Inventors: Hyun W. Bae, Nicholas Slater, Joshua A. Butters, Daniel F. Justin, Dylan M. Hushka, Rick Delamarter
  • Publication number: 20100204739
    Abstract: A system for spinal surgery includes a prosthesis comprising a plurality of bone anchors which engage an intervertebral construct for fusion or motion preservation. The fusion construct comprises a spacer optionally encircled by a jacket. The motion preservation construct may comprise an articulating disc assembly or an elastomeric disc assembly. Any of the constructs may occupy the intervertebral disc space between adjacent vertebrae after removal of an intervertebral disc. The anchors slidingly engage the construct to securely fix the prosthesis to the vertebrae. The anchors and jacket of the fusion construct provide a continuous load path across opposite sides of the prosthesis so as to resist antagonistic motions of the spine.
    Type: Application
    Filed: December 17, 2009
    Publication date: August 12, 2010
    Applicant: IMDS, INC.
    Inventors: Hyun W. Bae, Dylan M. Hushka, Joshua A. Butters, Nicholas Slater, Daniel F. Justin, Rick Delamarter
  • Publication number: 20100204737
    Abstract: A system for spinal surgery includes a prosthesis comprising a plurality of bone anchors which engage an intervertebral construct for fusion or motion preservation. The fusion construct comprises a spacer optionally encircled by a jacket. The motion preservation construct may comprise an articulating disc assembly or an elastomeric disc assembly. Any of the constructs may occupy the intervertebral disc space between adjacent vertebrae after removal of an intervertebral disc. The anchors slidingly engage the construct to securely fix the prosthesis to the vertebrae. The anchors and jacket of the fusion construct provide a continuous load path across opposite sides of the prosthesis so as to resist antagonistic motions of the spine.
    Type: Application
    Filed: December 17, 2009
    Publication date: August 12, 2010
    Applicant: IMDS, Inc.
    Inventors: Hyun W. Bae, Dylan M. Hushka, Joshua A. Butters, Nicholas Slater, Daniel F. Justin, Rick Delamarter
  • Publication number: 20100160947
    Abstract: A minimally invasive dilation device includes a stylus, a plurality of rigid arms radially arrayed about the stylus, and a dilating member positioned between the stylus and the arms. An outer flexible sleeve may be circumferentially secured to the arms, lying within or without the plurality of arms. An inner mesh may surround the stylus and dilating member. The device may be introduced into tissue toward a targeted area, while in a closed configuration. The dilating member may be a balloon, wherein upon inflation of the balloon, the arms are pushed radially outward, expanding the device and dilating the surrounding tissue. A cannula may be inserted inside the plurality of arms to keep the arms in an open configuration, and the stylus, balloon and inner mesh may be withdrawn, providing an open passageway through the device to the targeted area. The device may be used with a neural monitoring system.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 24, 2010
    Applicant: IMDS, INC.
    Inventors: Ephraim Akyuz, Kabir Gambhir, Corbet W. Stone
  • Publication number: 20100106240
    Abstract: A system for treating an aneurysm includes an expandable barrier positionable to bridge an aneurysm neck. The barrier may comprise a fiber mesh, a balloon or a molly anchor member, and may unroll, unfold, or inflate from a compact configuration to an expanded configuration. Expansion of the barrier may be greater radially than axially. A vaso-occlusive member comprising a coil or balloon may be deposited in the aneurysm. Another aneurysm treatment system comprises an outer fenestrated stent and/or an inner fenestrated sleeve, which may be implanted together adjacent an aneurysm neck to regulate blood flow to the aneurysm. The sleeve may be movable relative to the stent to open or occlude the fenestrations, which may vary in size, shape, and distribution. An intra-luminal vessel occlusion device comprises a stent and a sheath. A drawstring may be actuated to gradually close a sheath orifice to control blood flow through the vessel.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 29, 2010
    Applicant: IMDS, Inc.
    Inventors: Neil Duggal, Robert John De Hoog, Donald H. Lee, Louise C. Raymond, Joshua A. Butters
  • Publication number: 20100100107
    Abstract: A system and method for treating a defect. The system may comprise a first expandable barrier insertable into a defect interior space in a compact state and then expanded once positioned inside the defect. The first expandable barrier is expanded to be positioned against the inner surface of the defect. The system may also comprise a second barrier which may be expandable, positioned against the outer surface of the defect. Each of the first and second barriers may expand laterally to a greater extent than axially. The first and second barriers may be in communication through a connection member which couples the two barriers together. The barriers each obliterate the defect and can prevent subsequent CSF or other fluid leaks. Fibrin glue may be introduced into the defect to seal and secure the barriers to the defect. Each barrier may comprise a mesh, a basket, an umbrella or a balloon.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 22, 2010
    Applicant: IMDS, INC.
    Inventors: Neil Duggal, Louise C. Raymond, Joshua A. Butters
  • Publication number: 20100069926
    Abstract: A system for restoring articular cartilage has a cover, an anchor, and a tether that cooperate to retain graft tissue with respect to a graft site. The cover is attached to the anchor via the tether. The tether passes through a tunnel through a bone to which the articular cartilage is attached. The tunnel may be blind or may extend through the bone. The anchor is retained within the tunnel such that tension in the tether keeps the cover in place over the tissue graft. The anchor may receive the tether such that the tether can only pass through the anchor along one direction. Thus, tension applied to the tether between the anchor and the tissue graft is automatically maintained by the anchor. After passing through the anchor, the tether may exit the tunnel through the graft site, or through the opposite side of the bone.
    Type: Application
    Filed: November 23, 2009
    Publication date: March 18, 2010
    Applicant: IMDS, INC.
    Inventors: E. Marlowe Goble, T. Wade Fallin
  • Patent number: 7666522
    Abstract: A method is provided for depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The wear resistant surface of the medical implant device may be formed by a Laser Based Metal Deposition (LBMD) method such as Laser Engineered Net Shaping (LENS). The wear resistant surface may include a blend of multiple different biocompatible materials. Further, functionally graded layers of biocompatible materials may be used to form the wear resistant surface. Usage of a porous material for the base may promote bone ingrowth to allow the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity, particularly when applied to bearing surfaces such as artificial joint bearing surfaces or a dental implant bearing surfaces.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: February 23, 2010
    Assignee: IMDS, Inc.
    Inventors: Daniel F. Justin, Brent E. Stucker, T. Wade Fallin, Durga Janaki Ram Gabbita
  • Patent number: 7641694
    Abstract: A system for restoring articular cartilage has a cover, an anchor, and a tether that cooperate to retain graft tissue with respect to a graft site. The cover is attached to the anchor via the tether. The tether passes through a tunnel through a bone to which the articular cartilage is attached. The tunnel may be blind or may extend through the bone. The anchor is retained within the tunnel such that tension in the tether keeps the cover in place over the tissue graft. The anchor may receive the tether such that the tether can only pass through the anchor along one direction. Thus, tension applied to the tether between the anchor and the tissue graft is automatically maintained by the anchor. After passing through the anchor, the tether may exit the tunnel through the graft site, or through the opposite side of the bone.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: January 5, 2010
    Assignee: IMDS, Inc.
    Inventors: E. Marlowe Goble, T. Wade Fallin
  • Patent number: 7632575
    Abstract: A method of depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The medical implant device formed by a Laser Based Metal Deposition (LBMD) method. The porous material of the base promotes bone ingrowth allowing the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity when applied to bearing surfaces such as artificial joint bearing surface or a dental implant bearing surface.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: December 15, 2009
    Assignee: IMDS, Inc.
    Inventors: Daniel F. Justin, Brent E. Stucker