Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
April 10, 2018
Date of Patent:
January 26, 2021
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Juliane Sarah Walz, Daniel Kowalewski, Markus Löffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
June 30, 2020
Date of Patent:
December 22, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Colette Song, Linus Backert, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to several novel peptide sequences and their variants derived from HLA class I and HLA class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
Type:
Grant
Filed:
April 30, 2020
Date of Patent:
October 13, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Hans-Georg Rammensee, Stefan Stevanovic, Juliane Walz, Daniel Johannes Kowalewski, Claudia Berlin
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
October 30, 2019
Date of Patent:
October 13, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Andrea Mahr, Toni Weinschenk, Anita Wiebe, Oliver Schoor, Jens Fritsche, Harpreet Singh
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
April 17, 2020
Date of Patent:
October 6, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Toni Weinschenk, Jens Fritsche, Harpreet Singh, Andrea Mahr, Martina Ott, Claudia Wagner, Oliver Schoor
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
March 27, 2020
Date of Patent:
October 6, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Heiko Schuster, Franziska Hoffgaard, Jens Fritsche, Oliver Schoor, Toni Weinschenk, Daniel Johannes Kowalewski, Chih-Chiang Tsou
Abstract: The present invention relates to immunotherapeutic methods, and molecules and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumour-associated T-helper cell peptide epitopes, alone or in combination with other tumour-associated peptides, that serve as active pharmaceutical ingredients of vaccine compositions which stimulate anti-tumour immune responses. In particular, the present invention relates to 49 novel peptide sequences derived from HLA class II molecules of human tumour cell lines which can be used in vaccine compositions for eliciting anti-tumour immune responses.
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
September 25, 2019
Date of Patent:
March 24, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Andrea Mahr, Toni Weinschenk, Helen Hoerzer, Oliver Schoor, Jens Fritsche, Harpreet Singh
Abstract: The present invention pertains to antigen recognizing constructs against tumor associated antigens (TAA), in particular the TAA Serine protease inhibitor Kazal-type 2 (SPINK2). The invention in particular provides novel T cell receptor (TCR) based molecules which are selective and specific for the tumor expressed antigen of the invention. The TCR of the invention, and SPINK2 binding fragments derived therefrom, are of use for the diagnosis, treatment and prevention of SPINK2 expressing cancerous diseases. Further provided are nucleic acids encoding the antigen recognizing constructs of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen recognizing constructs and pharmaceutical compositions comprising the compounds of the invention.
Type:
Grant
Filed:
June 29, 2018
Date of Patent:
March 17, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Claudia Wagner, Leonie Alten, Sebastian Bunk, Dominik Maurer
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
July 23, 2019
Date of Patent:
March 3, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Claudia Wagner, Julia Leibold, Colette Song
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
September 6, 2019
Date of Patent:
March 3, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Toni Weinschenk, Jens Fritsche, Harpreet Singh, Andrea Mahr, Martina Ott, Claudia Wagner, Oliver Schoor
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
May 17, 2018
Date of Patent:
March 3, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to several novel peptide sequences and their variants derived from HLA class I and HLA class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
Type:
Grant
Filed:
May 24, 2019
Date of Patent:
February 25, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Juliane Walz, Daniel Johannes Kowalewski, Hans-Georg Rammensee, Stefan Stevanovic
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
November 4, 2019
Date of Patent:
February 25, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
August 30, 2019
Date of Patent:
February 25, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Heiko Schuster, Janet Peper, Philipp Wagner, Hans-Georg Rammensee
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
September 6, 2019
Date of Patent:
February 18, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Toni Weinschenk, Jens Fritsche, Harpreet Singh, Andrea Mahr, Martina Ott, Claudia Wagner, Oliver Schoor
Abstract: The present invention pertains to antigen recognizing constructs against COL6A3 antigens. The invention in particular provides novel T cell receptor (TCR) based molecules which are selective and specific for the tumor expressed antigen COL6A3. The TCR of the invention, and COL6A3 antigen binding fragments derived therefrom, are of use for the diagnosis, treatment and prevention of COL6A3 expressing cancerous diseases. Further provided are nucleic acids encoding the antigen recognizing constructs of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen recognizing constructs and pharmaceutical compositions comprising the compounds of the invention.
Type:
Grant
Filed:
August 15, 2017
Date of Patent:
February 4, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Leonie Alten, Dominik Maurer, Steffen Walter, Sebastian Bunk
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
July 23, 2019
Date of Patent:
February 4, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Claudia Wagner, Julia Leibold, Colette Song
Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Type:
Grant
Filed:
March 28, 2019
Date of Patent:
February 4, 2020
Assignee:
Immatics Biotechnologies GmbH
Inventors:
Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Colette Song
Abstract: The present invention relates to a method for the absolute quantification of naturally processed HLA-restricted cancer peptides, i.e. the determination of the copy number of peptide(s) as presented per cell. The present invention can not only be used for the development of antibody therapies or peptide vaccines, but is also highly valuable for a molecularly defined immuno-monitoring, and useful in the processes of identifying of new peptide antigens for immunotherapeutic strategies, such as respective vaccines, antibody-based therapies or adoptive T-cell transfer approaches in cancer, infectious and/or autoimmune diseases.