Patents Assigned to Immunomedics, Inc.
  • Patent number: 9757458
    Abstract: Extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor (BCR) with a sufficiently high amount of anti-IgM. Either treatment leads to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were needed to induce caspase-dependent apoptosis. Immobilization also induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (??m), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. Several of the in vitro effects of immobilized epratuzumab, including apoptosis, drop in ??m, and generation of ROS, were observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: September 12, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 9751948
    Abstract: The present invention provides compositions and methods of use of anti-IGF-1R antibodies or antibody fragments. Preferably the antibodies bind to IGF-1R but not IR; are not agonists for IGF-1R; do not block binding of IGF-1 or IGF-2 to isolated IGF-1R, but effectively neutralize activation of IGF-1R by IGF-1 in intact cells; and block binding of an R1 antibody to IGF-1R. The antibodies may be murine, chimeric, humanized or human R1 antibodies comprising the heavy chain CDR sequences DYYMY (SEQ ID NO:1), YITNYGGSTYYPDTVKG (SEQ ID NO:2) and QSNYDYDGWFAY (SEQ ID NO:3) and the light chain CDR sequences KASQEVGTAVA (SEQ ID NO:4), WASTRHT (SEQ ID NO:5) and QQYSNYPLT (SEQ ID NO:6). Preferably the antibodies bind to an epitope of IGF-1R comprising the first half of the cysteine-rich domain of IGF-1R (residues 151-222). The anti-IGF-1R antibodies may be used for diagnosis or therapy of various diseases such as cancer.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: September 5, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, Michele J. Losman, David M. Goldenberg
  • Patent number: 9745380
    Abstract: This invention relates to monovalent and multivalent, monospecific binding proteins and to multivalent, multispecific binding proteins. One embodiment of these binding proteins has one or more binding sites where each binding site binds with a target antigen or an epitope on a target antigen. Another embodiment of these binding proteins has two or more binding sites where each binding site has affinity towards different epitopes on a target antigen or has affinity towards either a target antigen or a hapten. The present invention further relates to recombinant vectors useful for the expression of these functional binding proteins in a host. More specifically, the present invention relates to the tumor-associated antigen binding protein designated RS7, and other EGP-1 binding-proteins. The invention further relates to humanized, human and chimeric RS7 antigen binding proteins, and the use of such binding proteins in diagnosis and therapy.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: August 29, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam Govindan, Zhengxing Qu, Hans Hansen, David M. Goldenberg
  • Patent number: 9745374
    Abstract: Recombinant immunotoxins containing a cytotoxic RNAse fused to an antibody or antibody fragment may be produced in mammalian cell culture. Surprisingly, immunotoxins containing a cytotoxic RNAse fused to the N-terminus of one antibody variable domain can be prepared and retain the ability to specifically bind antigen. The immunotoxins may be used in a variety of therapeutic methods for treating diseases or syndromes associated with unwanted or inappropriate cell proliferation or activation.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: August 29, 2017
    Assignee: IMMUNOMEDICS, INC.
    Inventors: David M. Goldenberg, Hans J. Hansen, Chien-Hsing Ken Chang, Sailaja S. Vanama, Edmund A. Rossi
  • Patent number: 9707300
    Abstract: The present invention concerns methods and compositions for delivery of therapeutic agents to target cells, tissues or organisms. In preferred embodiments, the therapeutic agents are delivered in the form of therapeutic-loaded polymers that may comprise many copies of one or more therapeutic agents. In more preferred embodiments, the polymer may be conjugated to a peptide moiety that contains one or more haptens, such as HSG. The agent-polymer-peptide complex may be delivered to target cells by, for example, a pre-targeting technique utilizing bispecific or multispecific antibodies or fragments, having at least one binding arm that recognizes the hapten and at least a second binding arm that binds specifically to a disease or pathogen associated antigen, such as a tumor associated antigen. Methods for synthesizing and using such therapeutic-loaded polymers and their conjugates are provided.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: July 18, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam V. Govindan, Sung-Ju Moon, David M. Goldenberg, Chien-Hsing Chang
  • Patent number: 9707302
    Abstract: The present invention relates to combination therapy with drugs, such as microtubule inhibitors, PARP inhibitors, Bruton kinase inhibitors or PI3K inhibitors, with antibodies or immunoconjugates against HLA-DR or Trop-2. Where immunoconjugates are used, they preferably incorporate SN-38 or pro-2PDOX. The immunoconjugate may be administered at a dosage of between 1 mg/kg and 18 mg/kg, preferably 4, 6, 8, 9, 10, 12, 16 or 18 mg/kg, more preferably 8 or 10 mg/kg. The combination therapy can reduce solid tumors in size, reduce or eliminate metastases and is effective to treat cancers resistant to standard therapies, such as radiation therapy, chemotherapy or immunotherapy. Preferably, the combination therapy has an additive effect on inhibiting tumor growth. Most preferably, the combination therapy has a synergistic effect on inhibiting tumor growth.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: July 18, 2017
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Thomas M. Cardillo
  • Patent number: 9700634
    Abstract: The present invention relates to therapeutic conjugates with improved ability to target various diseased cells containing a targeting moiety (such as an antibody or antibody fragment), a linker and a therapeutic moiety, and further relates to processes for making and using the conjugates.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: July 11, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam V. Govindan, Sung-Ju Moon, David M. Goldenberg
  • Patent number: 9701748
    Abstract: Disclosed are humanized RFB4 antibodies or antigen-binding fragments thereof. therapy of B-cell associated diseases, such as B-cell malignancies, autoimmune disease and immune dysfunction disease. Preferably, hRFB4 comprises the light and heavy chain RFB4 CDR sequences with human antibody FR and constant region sequences, along with heavy chain framework region (FR) amino acid residues Q1, F27, V48, A49, F68, R98, T117 and light chain residues L4, S22, K39, G100, V104, and K107. More preferably, the heavy and light chain variable region sequences of hRFB4 comprise SEQ ID NO:7 and SEQ ID NO:8, respectively. In certain embodiments, trogocytosis (antigen shaving) induced by hRFB4 plays a significant role in determining antibody efficacy and disease responsiveness for treatment of B-cell diseases, such as hematopoietic cancers, immune system dysfunction and/or autoimmune disease.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: July 11, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 9694088
    Abstract: Disclosed are methods, compositions and uses of conjugates of prodrug forms of 2-pyrrolinodoxorubicin (P2PDox) with antibodies or antigen-binding fragments thereof (ADCs), with targetable construct peptides or with other targeting molecules that are capable of delivering the P2PDox to a targeted cell, tissue or pathogen. Once delivered to the target cell, the ADC or peptide conjugate is internalized, a highly toxic 2-pyrrolinodoxorubicin (2-PDox) is released intracellularly. The P2PDox-peptide or ADC conjugates are of use to treat a wide variety of diseases, such as cancer, autoimmune disease or infectious disease.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: July 4, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam V. Govindan, William J. McBride, Nalini Sathyanarayan, Christine Mazza-Ferreira, David M. Goldenberg
  • Patent number: 9687547
    Abstract: The present invention concerns methods and compositions for treatment of HIV infection using a T20 expression vector, such as that shown in SEQ ID NO:1 or SEQ ID NO:3. The T20 expression vector may be used in a variety of therapeutic applications, such as ex vivo transfection of dendritic cells to induce a host immune response to HIV, localized transfection in vivo in a gene therapy approach to provide longer term delivery of T20, or in vitro production of T20 peptide. The T20 may be secreted into the circulation to act as a fusion inhibitor of HIV infection, or may induce an endogenous immune response to HIV or HIV-infected cells. Alternatively, a DDD peptide may be incorporated in a fusion protein comprising T20 or another antigenic protein or peptide to enhance the immune response to the protein or peptide.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: June 27, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Sofia Stenler, Britta Wahren, Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 9683050
    Abstract: Disclosed are methods, compositions and uses of high concentration antibody or immunoglobulin formulations for subcutaneous, intramuscular, transdermal or other local (regional) administration, in a volume of than 3, less than 2 or less than 1 ml. Preferably, the formulation contains a high concentration formulation (HCF) buffer comprising phosphate, citrate, polysorbate 80 and mannitol at a pH of about 5.2. The formulation more preferably comprises at least 100, 150, 200, 250 mg/ml or 300 mg/ml of antibody. The methods for preparing the high concentration formulation include ultrafiltration and diafiltration to concentrate the antibody and exchange the medium for HCF buffer. Other embodiments concern use of non-G1m1 (nG1m1) allotype antibodies, such as G1m3 and/or a nG1m1,2 antibodies. The nG1m1 antibodies show decreased immunogenicity compared to G1m1 antibodies.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: June 20, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Li Zeng, Rohini Mitra, Edmund A. Rossi, Hans J. Hansen, David M. Goldenberg
  • Patent number: 9675706
    Abstract: The present invention relates to therapeutic conjugates with improved ability to target various diseased cells containing a targeting moiety (such as an antibody or antibody fragment), a linker and a therapeutic moiety, and further relates to processes for making and using the conjugates.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: June 13, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam V. Govindan, Sung-Ju Moon, David M. Goldenberg
  • Patent number: 9663576
    Abstract: Disclosed are methods and compositions of anti-B cell antibodies, preferably anti-CD22 antibodies, for diagnosis, prognosis and therapy of B-cell associated diseases, such as B-cell malignancies, autoimmune disease and immune dysfunction disease. In certain embodiments, trogocytosis induced by anti-B cell antibodies may determine antibody efficacy, disease responsiveness and prognosis of therapeutic intervention. In other embodiments, optimal dosages of therapeutic antibody may be selected by monitoring the degree of trogocytosis induced by anti-B cell antibodies.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: May 30, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Hans J. Hansen, Edmund A. Rossi
  • Patent number: 9657093
    Abstract: The present invention concerns chimeric or humanized antibodies or antigen-binding fragments thereof that comprise specific CDR sequences, disclosed herein. Preferably, the antibodies or fragments comprise specific heavy and light chain variable region sequences disclosed herein. More preferably, the antibodies or fragments also comprise specific constant region sequences, such as those associated with the nG1m1,2 or Km3 allotypes. The antibodies or fragments may bind to a human histone protein, such as H2B, H3 or H4. The antibodies or fragments are of use to treat a variety of diseases that may be associated with histones, such as autoimmune disease (e.g.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: May 23, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, Hans J. Hansen, David M. Goldenberg
  • Patent number: 9629926
    Abstract: The present invention concerns improved methods and compositions for preparing SN-38 conjugates of proteins or peptides, preferably immunoconjugates of antibodies or antigen-binding antibody fragments. More preferably, the SN-38 is attached to the antibody or antibody fragment using a CL2A linker, with 1-12, more preferably 6 or less, most preferably 1-5 SN-38 moieties per antibody or antibody fragment. Most preferably, the immunoconjugate is prepared in large scale batches, with various modifications to the reaction scheme to optimize yield and recovery in large scale. Other embodiments concern optimized dosages and/or schedules of administration of immunoconjugate to maximize efficacy for disease treatment and minimize side effects of administration.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: April 25, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam V. Govindan, Jonathan B. Gale, Nicholas J. Holman, David M. Goldenberg
  • Patent number: 9605071
    Abstract: The present invention provides humanized, chimeric and human anti-CD19 antibodies, anti-CD19 antibody fusion proteins, and fragments thereof that bind to a human B cell marker. Such antibodies, fusion proteins and fragments thereof are useful for the treatment and diagnosis of various B-cell disorders, including B-cell malignancies and autoimmune diseases. In more particular embodiments, the humanized anti-CD19 antibodies may comprise one or more framework region amino acid substitutions designed to improve protein stability, antibody binding and/or expression levels. In a particularly preferred embodiment, the substitutions comprise a Ser9lPhe substitution in the hA19 VH sequence.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: March 28, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Hans J. Hansen, Zhengxing Qu, David M. Goldenberg
  • Patent number: 9599619
    Abstract: Described herein are compositions and methods of use of anti-pancreatic cancer antibodies or fragments thereof, such as murine, chimeric, humanized or human PAM4 antibodies. The subject antibodies show a number of novel and useful therapeutic characteristics, such as binding with high specificity to pancreatic and other cancers, but not to normal or benign pancreatic tissues and binding to a high percentage of early stage pancreatic cancers. In preferred embodiments, the antibodies bind to pancreatic cancer mucins. The antibodies and fragments are of use for the detection, diagnosis and/or treatment of cancer, such as pancreatic cancer. The antibodies, such as PAM4 antibodies, bind to a PAM4 antigen that shows unique cell and tissue distributions compared with other known antibodies such as CA19.9, DUPAN2, SPAN1, Nd2, B72.3, and Lea and Le(y) antibodies that bind to the Lewis antigens.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: March 21, 2017
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Hans J. Hansen, Chien-Hsing Chang, David V. Gold
  • Patent number: 9580495
    Abstract: Severe glomerulonephritis involves cell necrosis as well as NETosis, programmed neutrophil death leading to expulsion of nuclear chromatin and neutrophil extracellular traps (NETs). Histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells. This was prevented by histone-neutralizing agents anti-histone IgG, activated protein C and heparin. Histone toxicity on glomeruli was TLR2/4-dependent. Anti-GBM glomerulonephritis involved NET formation and vascular necrosis. Pre-emptive anti-histone IgG administration significantly reduced all aspects of glomerulonephritis, including vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment and activation of glomerular leukocytes and glomerular crescent formation.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: February 28, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Santhosh V. R. Kumar, Hans-Joachim Anders
  • Patent number: 9522959
    Abstract: The present invention relates to therapeutic immunoconjugates comprising SN-38 attached to an antibody or antigen-binding antibody fragment. The antibody may bind to EGP-1 (TROP-2), CEACAM5, CEACAM6, CD74, CD19, CD20, CD22, CSAp, HLA-DR, AFP or MUC5ac and the immunoconjugate may be administered at a dosage of between 4 mg/kg and 24 mg/kg, preferably 4, 6, 8, 9, 10, 12, 16 or 18 mg/kg. When administered at specified dosages and schedules, the immunoconjugate can reduce solid tumors in size, reduce or eliminate metastases and is effective to treat cancers resistant to standard therapies, such as radiation therapy, chemotherapy or immunotherapy.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: December 20, 2016
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam V. Govindan, David M. Goldenberg
  • Patent number: 9518115
    Abstract: Disclosed are humanized RFB4 antibodies or antigen-binding fragments thereof. therapy of B-cell associated diseases, such as B-cell malignancies, autoimmune disease and immune dysfunction disease. Preferably, hRFB4 comprises the light and heavy chain RFB4 CDR sequences with human antibody FR and constant region sequences, along with heavy chain framework region (FR) amino acid residues Q1, F27, V48, A49, F68, R98, T117 and light chain residues L4, S22, K39, G100, V104, and K107. More preferably, the heavy and light chain variable region sequences of hRFB4 comprise SEQ ID NO:7 and SEQ ID NO:8, respectively. In certain embodiments, trogocytosis (antigen shaving) induced by hRFB4 plays a significant role in determining antibody efficacy and disease responsiveness for treatment of B-cell diseases, such as hematopoietic cancers, immune system dysfunction and/or autoimmune disease.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: December 13, 2016
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg