Patents Assigned to Impala Linear Corporation
  • Patent number: 6285177
    Abstract: A current-limit circuit and a method of limiting current supplied to a load through a power transistor utilize a control transistor that is selectively activated to a conducting state to limit the current conducted through the power transistor in response to a predefined condition. The predefined condition may be a short-circuit condition or an over-current condition. The configuration and operation of the control transistor are such that, when the control transistor is in a conducting state, the current conducted through the power transistor is limited by the structural ratio of the two transistors. However, during normal operating conditions when the control transistor is deactivated to a non-conducting state, the control transistor does not degrade the performance of the power transistor. In a first embodiment, the current-limit circuit is configured to provide protection from a short-circuit condition.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: September 4, 2001
    Assignee: Impala Linear Corporation
    Inventors: Shekar Mallikarjunaswamy, Brian H. Floyd
  • Patent number: 6198312
    Abstract: A circuit and a method for comparing an input voltage to an internally generated reference voltage utilize a bias network to make the voltage comparison. The bias network is preferably configured to generate a proportional-to-absolute-temperature (PTAT) reference voltage, which is used for the voltage comparison. Although the circuit can be implemented to operate in a number of applications, the circuit is particularly useful in a current sensing application. The circuit includes the bias network, a comparison current path and an output terminal. The comparison current path is configured to partially duplicate a current path of the bias network on which the reference voltage is generated. The comparison current path includes a current control element and an active transistor. Depending on the input voltage applied to the active transistor of the comparison current path, the output terminal is driven to generate either a high or a low comparison signal.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: March 6, 2001
    Assignee: Impala Linear Corporation
    Inventor: Brian H. Floyd
  • Patent number: 6005378
    Abstract: A low dropout (LDO) voltage regulator for generating a well-regulated voltage which is stable with variations in load resistance and in supply voltage includes a non-complex reference voltage generator. In the preferred embodiment, the reference voltage generator is configured to function as an amplifier as well as a reference voltage generator. In one embodiment, a single gain stage LDO voltage regulator utilizes the single function reference voltage generator which is compared to a feedback voltage that is proportional to an output voltage. The feedback voltage and the reference voltage control two currents which are used to generate a control signal to a pass transistor. Depending on the supply voltage, the pass transistor either increases or decreases the current to an output terminal to raise or lower the output voltage until the output voltage equals the regulated voltage. In another embodiment, a two gain stage LDO voltage regulator utilizes the dual function reference voltage generator.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: December 21, 1999
    Assignee: Impala Linear Corporation
    Inventors: Kevin P. D'Angelo, Robert S. Wrathall
  • Patent number: 6002244
    Abstract: A temperature monitoring circuit with thermal hysteresis in CMOS circuitry utilizes bipolar transistors which are parasitic to standard CMOS circuitry. A concept of band-gap circuitry is used to provide a proportional to absolute temperature (PTAT) current, which is used as a reference. An output signal is produced above a predetermined temperature by comparing current changes between the PTAT current and a PTAT controlled current in a single current path. The PTAT controlled current decreases faster with temperature increase than the change in the PTAT current. The thermal hysteresis is accomplished by inverting the output signal to control a hysteresis transistor for selectively shorting out a hysteresis resistor. In the preferred embodiment, a start circuit is attached to the temperature monitoring circuit with thermal hysteresis to provide an initial current to activate the present invention. The start circuit is quickly shorted out once the devices of the present invention are turned on.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: December 14, 1999
    Assignee: Impala Linear Corporation
    Inventor: Robert S. Wrathall
  • Patent number: 5929615
    Abstract: A circuit and method for providing a voltage regulation despite variations in the supply voltage and/or the load utilize a MOS synchronous rectifier in a flyback topology to perform both step-up and step-down operations. The circuit operates in a boost-type operation until the voltage at an output terminal exceeds a predetermined shut-off voltage. At such time, a duty cycle of the circuit is suspended until the voltage at the output terminal falls below the predetermined shut-off voltage. Triggering the duty cycle and the suspension of the duty cycle are dependent solely upon the voltage at the output terminal. The circuit includes a steering device that connects the body of MOS synchronous rectifier to either its source or its drain to consistently configure the MOS synchronous rectifier in a reverse-biased condition. Preferably, the steering device is comprised of two PMOS transistors that are controlled by the voltages at the source and drain of MOS synchronous rectifier.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: July 27, 1999
    Assignee: Impala Linear Corporation
    Inventors: Kevin P. D'Angelo, Robert S. Wrathall
  • Patent number: 5889393
    Abstract: A voltage regulator and method of voltage regulation utilizes an error amplifier and a transconductance amplifier together with a voltage reference, startup circuit and output load. The use of the transconductance amplifier allows the use of an arrangement of two poles and a zero such that the composite gain roll-off has a generally constant slope. One of the poles utilized in this stability scheme is the outer pole formed by the resistive-like load and its filter capacitor. Another pole and zero are generated in the error amplifier circuit. To decouple the noisy input supply voltage, sensitive parts of the circuit are powered by the regulated output voltage. A start circuit is provided to start up the output and voltage reference when no output voltage is present. The transconductance amplifier block has special characteristics which allow it to work to relatively high frequency, above the gain bandwidth product of the control loop. It is driven by a fully differential push-pull, class AB amplifier.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: March 30, 1999
    Assignee: Impala Linear Corporation
    Inventor: Robert S. Wrathall
  • Patent number: 5867014
    Abstract: A current sense circuit utilizes multiple resistive reference switches connected in electrical series to reduce the level of required reference current (Iref), while maintaining the integrity of tracking current (Iout) through a resistive power switch. Typically, all of the reference switches are MOS transistors connected in electrical series. The first embodiment includes establishing a ratio (n) of series reference transistors to series pilot transistors, n>1. In another embodiment, the series connection of reference switches is in parallel with a single reference resistor and is identical to a series connection of a number (NP) of pilot switches. In a third embodiment, the techniques of the first two embodiments are combined (i.e., n>1 and NP>1). The current sense circuit is utilized to monitor output current through a power switch from a circuit load.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: February 2, 1999
    Assignee: Impala Linear Corporation
    Inventors: Robert S. Wrathall, Kevin P. D'Angelo