Abstract: A prefabricated medical implant made of polymeric material having increased wear resistance without substantially changing its ductility and other physical properties is described. The implant is formed by a method including the steps of heating a sealed, packaged, prefabricated implant, having a reduced oxygen atmosphere, to an elevated temperature below its annealing point at a predetermined rate and held at that temperature for a predetermined time. After this time the packaged implant, while being maintained in a predetermined temperature range, is irradiated with a predetermined amount of gamma radiation. After irradiation, the implant is permitted to cool at a predetermined rate. Thermal conductive and thermal insulation containers are also provided for holding the packaged implants during the process.
Type:
Grant
Filed:
March 10, 1999
Date of Patent:
March 12, 2002
Assignee:
Implex Corp.
Inventors:
Robert Poggie, Robert Averill, Richard Afflitto
Abstract: A hip prosthesis for implanting into the medullary canal of a femur, which comprises a stem for implanting into the canal of the femur, the stem having a proximal end and a distal end, the stem also including a proximal locking zone substantially adjacent the proximal end, the proximal locking zone including a proximal locking surface which circumferentially press-fits within the canal of the femur and a neck extending at an angle from the proximal end of the stem for receiving the femoral head of the prosthesis.
Type:
Grant
Filed:
May 5, 1995
Date of Patent:
January 14, 1997
Assignee:
Implex Corp.
Inventors:
Robert G. Averill, Robert C. Cohen, Rafail Zubok
Abstract: An acetabular cup prosthetic device comprised of an outer shell component and a inner bearing insert and the method of implanting the acetabular cup prosthetic within a patient. The outer surface of the shell component for the present invention acetabular cup has a plurality of regions which conform to the curvature of at least one ellipsoid. To implant the shell component, the acetabulum of a patient is spherically reamed to a size slightly smaller than that of the outer surface of the shell component. As the shell component is inserted into the spherically shaped acetabulum, the interior surface of the acetabular cavity deforms to assume a substantially ellipsoidal curvature, producing an interference fit between the rim region of the shell component and the upper peripheral rim region of the acetabulum.