Patents Assigned to Impossible Objects, Inc.
  • Patent number: 10946592
    Abstract: A method and apparatus for resistive heating usable in composite-based additive manufacturing is disclosed. The method includes providing a prepared stack of substrate sheets, placing the stack between electrode assemblies of a compression device, applying a current to thereby heat the stack to a final temperature to liquefy applied powder, compressing the stack to a final height, cooling the stack, and removing the cooled, compressed stack from the compression device. The apparatus comprises at least two plates, a power supply for providing current, a first electrode assembly and a second electrode assembly.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: March 16, 2021
    Assignee: Impossible Objects, Inc.
    Inventors: Robert Swartz, John Bayldon, Buckley Crist, Eugene Gore
  • Patent number: 10934120
    Abstract: A stacker component of an apparatus for automated manufacturing of three-dimensional composite-based objects for aligning registration of sheets. The stacker includes a sheet catcher; a frame having a base plate with the base plate having tapered registration pins to align a stack of substrate sheets. The registration pins are mounted in the base plate and project vertically to a location just below the sheet catcher. The stacker also has a presser with a press plate and a belt driver system that moves the press plate up and down allowing the press plate to exert downward pressure on the stack and a slide system with two guide rails that enable the base plate to be loaded and unloaded. A conveyor can be disposed so that after a substrate sheet exits a powder or printing system, the sheet is conveyed onto the sheet catcher.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: March 2, 2021
    Assignee: Impossible Objects, Inc.
    Inventors: Robert Swartz, Eugene Gore, Len Wanger, Chris Wagner, Brian Conti
  • Publication number: 20200384783
    Abstract: A method/system of mechanical holdowns allows a substrate sheet in a CBAM (composite-based additive manufacturing technology) process to lie flat during printing. The invention includes a process of mechanically clamping sheets to be printed by a print head to a flat platen using a set of barrel cam driven clamping fingers. The finger supports are attached to the platen and the fingers can be raised and lowered with respect to the platen. Each finger can rotate while swinging downward toward a sheet at the edge of the platen. To clamp the sheet, the fingers are rotated to the perpendicular position and swung lower down to pinch the sheet to the platen. The process can include additional steps that release some, but not all, of the fingers to allow the sheet to relax before re-clamping them.
    Type: Application
    Filed: May 16, 2020
    Publication date: December 10, 2020
    Applicant: Impossible Objects, Inc
    Inventors: Robert Swartz, Eugene Gore, Drew Marchner
  • Patent number: 10751987
    Abstract: An apparatus and method for the automated manufacturing of three-dimensional (3D) composite-based objects is disclosed. The apparatus comprises a material feeder, a printer, a powder system, a transfer system, and optionally a fuser. The method comprises inserting a stack of substrate sheets into a material feeder, transferring a sheet of the stack from the material feeder to a printer, depositing fluid on the single sheet while the sheet rests on a printer platen, transferring the sheet from the printer to a powder system, depositing powder onto the single sheet such that the powder adheres to the areas of the sheet onto which the printer has deposited fluid, removing any powder that did not adhere to the sheet, optionally melting the powder on the substrate, and repeating the steps for as many additional sheets as required for making a specified 3D object.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: August 25, 2020
    Assignee: IMPOSSIBLE OBJECTS, INC.
    Inventors: Robert Swartz, Eugene Gore, Buckley Crist, John Balydon, Chris Wagner, Nicholas Tarzian, Evangeline Su
  • Publication number: 20200223653
    Abstract: A stacker component of an apparatus for automated manufacturing of three-dimensional composite-based objects for aligning registration of sheets. The stacker includes a sheet catcher; a frame having a base plate with the base plate having tapered registration pins to align a stack of substrate sheets. The registration pins are mounted in the base plate and project vertically to a location just below the sheet catcher. The stacker also has a presser with a press plate and a belt driver system that moves the press plate up and down allowing the press plate to exert downward pressure on the stack and a slide system with two guide rails that enable the base plate to be loaded and unloaded. A conveyor can be disposed so that after a substrate sheet exits a powder or printing system, the sheet is conveyed onto the sheet catcher.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 16, 2020
    Applicant: Impossible Objects, Inc.
    Inventors: Robert Swartz, Eugene Gore, Len Wanger, Chris Wagner, Brian Conti
  • Publication number: 20200223131
    Abstract: A three-dimensional object comprises substantially planar or flat substrate layers that are folded and stacked in a predetermined order and infiltrated by a hardened material. The object is fabricated by positioning powder on all or part of multiple substrate layers. On each layer, the powder is selectively deposited in a pattern that corresponds to tiles that each have a slice of the object. For each slice, powder is deposited in positions that correspond to positions in the slice where the object exists, and not deposited where the object does not exist. The tiles of each substrate layer are folded and aligned in a predetermined order. Multiple folded substrate layers mat be combined into a single stack. The powder is transformed into a substance that flows and subsequently hardens into the hardened material in a spatial pattern that infiltrates positive regions, and does not infiltrate negative regions, in the substrate layers.
    Type: Application
    Filed: December 11, 2019
    Publication date: July 16, 2020
    Applicant: Impossible Objects, Inc.
    Inventors: Robert Swartz, Eugene Gore, Buckley Crist
  • Patent number: 10597249
    Abstract: A stacker component of an apparatus for automated manufacturing of three-dimensional composite-based objects for aligning registration of sheets. The stacker includes a sheet catcher; a frame having a base plate with the base plate having tapered registration pins to align a stack of substrate sheets. The registration pins are mounted in the base plate and project vertically to a location just below the sheet catcher. The stacker also has a presser with a press plate and a belt driver system that moves the press plate up and down allowing the press plate to exert downward pressure on the stack and a slide system with two guide rails that enable the base plate to be loaded and unloaded. A conveyor can be disposed so that after a substrate sheet exits a powder or printing system, the sheet is conveyed onto the sheet catcher.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: March 24, 2020
    Assignee: Impossible Objects, Inc.
    Inventors: Robert Swartz, Eugene Gore, Len Wanger, Chris Wagner, Brian Conti
  • Publication number: 20190366626
    Abstract: A 3D object according to the invention comprises substrate layers infiltrated by hardened material. The 3D object is fabricated by a method comprising the following steps: Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Applicant: Impossible Objects, Inc.
    Inventors: Robert Swartz, Buckley Crist, Eugene Gore, Joseph M. Jacobson
  • Publication number: 20190366701
    Abstract: An apparatus and method for the automated manufacturing of three-dimensional (3D) composite-based objects is disclosed. The apparatus comprises a material feeder, a printer, a powder system, a transfer system, and optionally a fuser. The method comprises inserting a stack of substrate sheets into a material feeder, transferring a sheet of the stack from the material feeder to a printer, depositing fluid on the single sheet while the sheet rests on a printer platen, transferring the sheet from the printer to a powder system, depositing powder onto the single sheet such that the powder adheres to the areas of the sheet onto which the printer has deposited fluid, removing any powder that did not adhere to the sheet, optionally melting the powder on the substrate, and repeating the steps for as many additional sheets as required for making a specified 3D object.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 5, 2019
    Applicant: Impossible Objects Inc.
    Inventors: Robert Swartz, Eugene Gore, Buckley Crist, John Balydon, Chris Wagner, Nicholas Tarzian, Evangeline Su
  • Publication number: 20190329368
    Abstract: Cement or other liquid-like material fills the hollow tubes of a machine tool under construction. The machine tool structures are held rigidly against a fixture while the substance dries. The machine tool so constructed is relatively lightweight and rigid, and obviates the need for precision machining of large portions of the apparatus.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Applicant: Impossible Objects, Inc.
    Inventors: Robert Swartz, llian Moyer
  • Publication number: 20190283277
    Abstract: A tow stabilization method includes applying liquid to a tow having fibers arranged into a non-stabilized spread-out fiber web, applying powder to the web to adhere the powder where liquid was applied, removing powder from where it did not adhere, and fusing the powder remaining on the web to stabilize the fiber arrangement. The liquid may be volatile. The step of fusing may include heating the fiber web. The liquid and/or powder may be selectively applied. Selective application of powder may be used without application of liquid or powder removal. A tow stabilization apparatus includes a liquid applicator, powder applicator, powder remover, and powder fuser. The liquid applicator may include spray nozzles, applicators based on miniature solenoid valves, inkjet printing heads, and roll applicators. The powder remover may include rollers, air blasters, vibrators, sound wave generators, and vacuums. The powder fuser may include heat applicators and chemical reaction initiators.
    Type: Application
    Filed: November 16, 2018
    Publication date: September 19, 2019
    Applicant: Impossible Objects, Inc.
    Inventors: Robert Swartz, John Bayldon, Buckley Crist, Eugene Gore
  • Patent number: 10384437
    Abstract: An apparatus and method for the automated manufacturing of three-dimensional (3D) composite-based objects is disclosed. The apparatus comprises a material feeder, a printer, a powder system, a transfer system, and optionally a fuser. The method comprises inserting a stack of substrate sheets into a material feeder, transferring a sheet of the stack from the material feeder to a printer, depositing fluid on the single sheet while the sheet rests on a printer platen, transferring the sheet from the printer to a powder system, depositing powder onto the single sheet such that the powder adheres to the areas of the sheet onto which the printer has deposited fluid, removing any powder that did not adhere to the sheet, optionally melting the powder on the substrate, and repeating the steps for as many additional sheets as required for making a specified 3D object.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 20, 2019
    Assignee: Impossible Objects, Inc.
    Inventors: Robert Swartz, Eugene Gore, Buckley Crist, John Bayldon, Chris Wagner, Nicholas Tarzian, Evangeline Su
  • Patent number: 10377080
    Abstract: A 3D object according to the invention comprises substrate layers infiltrated by a hardened material. The 3D object is fabricated by a method comprising the following steps: Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 13, 2019
    Assignee: Impossible Objects, Inc.
    Inventors: Robert Swartz, Buckley Crist, Eugene Gore, Joseph M. Jacobson
  • Patent number: 10377106
    Abstract: A 3D object according to the invention involves substrate layers infiltrated by a hardened material. The 3D object may be fabricated by a method comprising the following steps: Flatten a substrate layer. Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion. Flattening a substrate layer involves reducing planar inconsistencies or imperfections, and comprises applying heat to each substrate layer, cooling the substrate layers, and optionally applying tension and/or pressure to the heated and cooled substrate layers.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 13, 2019
    Assignee: Impossible Objects, Inc.
    Inventors: Robert Swartz, Buckley Crist, Eugene Gore, Joseph M. Jacobson
  • Patent number: 10350877
    Abstract: A 3D object (the “New Object”) is fabricated layer by layer by 3D printing. The shape and relative dimensions of the various parts of the New Object match that of another 3D object (the “Target Object”). In addition, the exterior of the New Object appears to be a photographic likeness of the Target Object. The “photographic” likeness is created by variations in visual characteristics of materials in the layers comprising the New Object, and in particular by variations at or near the surface of the New Object. Thus, the photographic likeness is an integral part of these layers comprising the New Object. An object is scanned, from which a texture map is obtained. A CAD model is sliced into slices (bit maps files) which are then colored by a program with the boundary to match the color or gray scale to color the appropriate pixels, derived from the texture map.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: July 16, 2019
    Assignee: Impossible Objects, Inc.
    Inventors: Robert Swartz, Stephen Ness, Eugene Gore, Buckley Crist
  • Publication number: 20190202164
    Abstract: An additive manufacturing method and apparatus is described for the printing of three-dimensional (3D) objects. The approach is based on a composite-based additive manufacturing process, except it uses commercial printing methods to achieve even higher speed and throughput. By using the invention, a prototyping and/or production process may be completed in hours rather than months, and the risks and problems of molds is eliminated. There is substantial improvement in the number and type of geometries that can be produced compared to injection molding, and the range of materials is enlarged as are the material properties. The method involves printing a substrate having at least one sheet using a printing technology, and stacking or folding the at least one sheet to form multiple layers consistent with that formed by a 3D model. The printing step is done using a printing technology such as flexography, lithography, offset, gravure, waterless printing, and silkscreen.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Applicant: Impossible Objects, Inc.
    Inventor: Robert Swartz
  • Publication number: 20190134890
    Abstract: A stacker component of an apparatus for automated manufacturing of three-dimensional composite-based objects for aligning registration of sheets. The stacker includes a sheet catcher; a frame having a base plate with the base plate having tapered registration pins to align a stack of substrate sheets. The registration pins are mounted in the base plate and project vertically to a location just below the sheet catcher. The stacker also has a presser with a press plate and a belt driver system that moves the press plate up and down allowing the press plate to exert downward pressure on the stack and a slide system with two guide rails that enable the base plate to be loaded and unloaded. A conveyor can be disposed so that after a substrate sheet exits a powder or printing system, the sheet is conveyed onto the sheet catcher.
    Type: Application
    Filed: March 15, 2018
    Publication date: May 9, 2019
    Applicant: Impossible Objects, Inc.
    Inventors: Robert Swartz, Eugene Gore, Len Wanger, Chris Wagner, Brian Conti
  • Patent number: 10252487
    Abstract: An additive manufacturing method and apparatus is described for the printing of three-dimensional (3D) objects. The approach is based on a composite-based additive manufacturing process, except it uses commercial printing methods to achieve even higher speed and throughput. By using the invention, a prototyping and/or production process may be completed in hours rather than months, and the risks and problems of molds is eliminated. There is substantial improvement in the number and type of geometries that can be produced compared to injection molding, and the range of materials is enlarged as are the material properties. The method involves printing a substrate having at least one sheet using a printing technology, and stacking or folding the at least one sheet to form multiple layers consistent with that formed by a 3D model. The printing step is done using a printing technology such as flexography, lithography, offset, gravure, waterless printing, and silkscreen.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: April 9, 2019
    Assignee: Impossible Objects Inc.
    Inventor: Robert Swartz
  • Publication number: 20180345648
    Abstract: An apparatus and method for the automated manufacturing of three-dimensional (3D) composite-based objects is disclosed. The apparatus comprises a material feeder, a printer, a powder system, a transfer system, and optionally a fuser. The method comprises inserting a stack of substrate sheets into a material feeder, transferring a sheet of the stack from the material feeder to a printer, depositing fluid on the single sheet while the sheet rests on a printer platen, transferring the sheet from the printer to a powder system, depositing powder onto the single sheet such that the powder adheres to the areas of the sheet onto which the printer has deposited fluid, removing any powder that did not adhere to the sheet, optionally melting the powder on the substrate, and repeating the steps for as many additional sheets as required for making a specified 3D object.
    Type: Application
    Filed: August 9, 2018
    Publication date: December 6, 2018
    Applicant: Impossible Objects, Inc.
    Inventors: Robert Swartz, Eugene Gore, Buckley Crist, John Bayldon, Chris Wagner, Nicholas Tarzian, Evangeline Su
  • Publication number: 20180264725
    Abstract: A printer platen component of an apparatus for automated manufacturing of three-dimensional composite-based objects for printing onto substrate sheets. The platen solves two problems: 1) holding the sheet down without allowing it to move while printing; and 2) getting rid of excess printing fluid. The platen comprises a plate with a number of air channel openings used for suction to hold the sheet in place, a bed of wire used to suspend the sheet and to keep the sheet straight, a depressed reservoir where printing fluid accumulates, a number of punching holes, a number of screws which serve as release sites for the sheet and cooperate with tips of a gripper to transfer the sheet to the platen, and a rough surface to additionally help hold down the sheet and keep it from moving. The platen is connected to an air plenum resting underneath the main plate to provide the suction.
    Type: Application
    Filed: March 16, 2018
    Publication date: September 20, 2018
    Applicant: Impossible Objects, Inc.
    Inventors: Robert Swartz, Eugene Gore