Patents Assigned to IMPRINT ENERGY, INC.
  • Patent number: 11757492
    Abstract: Described herein are smart labels, each comprising multiple wireless radios, and methods of operating such labels. For example, a smart label comprises a battery and two wireless radios having different power requirements. When the battery is no longer able to support a high-power radio (e.g., NB-IoT), the battery can still power a low-power (e.g., BLE). A battery can be specially configured and/or controlled to support the multi-radio operation of the smart label. For example, a battery can include multiple battery cells with configurable connections among these cells and radios. Furthermore, some battery components can be shared by wireless radios. The battery can also power other components of the smart label, such as sensors (e.g., temperature, acceleration, pressure, package integrity, global positioning), memory, and input/output components. In some examples, multiple smart labels form a mesh network, designed to lower the total power consumption by the radios of these labels.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: September 12, 2023
    Assignee: Imprint Energy, Inc.
    Inventors: Christine Ho, Keith Michael Crane, Konstantin Tikhonov
  • Publication number: 20230155631
    Abstract: Described herein are smart labels, each comprising multiple wireless radios, and methods of operating such labels. For example, a smart label comprises a battery and two wireless radios having different power requirements. When the battery is no longer able to support a high-power radio (e.g., NB-IoT), the battery can still power a low-power (e.g., BLE). A battery can be specially configured and/or controlled to support the multi-radio operation of the smart label. For example, a battery can include multiple battery cells with configurable connections among these cells and radios. Furthermore, some battery components can be shared by wireless radios. The battery can also power other components of the smart label, such as sensors (e.g., temperature, acceleration, pressure, package integrity, global positioning), memory, and input/output components. In some examples, multiple smart labels form a mesh network, designed to lower the total power consumption by the radios of these labels.
    Type: Application
    Filed: November 12, 2021
    Publication date: May 18, 2023
    Applicant: Imprint Energy, Inc.
    Inventors: Christine Ho, Keith Michael Crane, Konstantin Tikhonov
  • Publication number: 20220416306
    Abstract: Provided are printed electrochemical cells, which utilize zinc salts for ionic transfer, and methods of fabricating such cells. In some examples, a printed electrochemical cell comprises a positive electrode with a positive current collector having a two-dimensional shape and comprising an electrolyte-facing surface formed by the graphite. For example, the positive current collector may be a graphite foil or an aluminum foil with a graphite coating. The cell also comprises electrolyte comprising an electrolyte salt and an electrolyte solvent. For example, the electrolyte salt comprises a zinc salt with a concentration of at least 30% by weight in the electrolyte. The cell is fabricated by printing a positive active material layer over the positive current collector, printing one or more electrolyte layers on various cell components, and laminating a separator layer between the positive and negative electrodes while soaking the separator layer with the electrolyte.
    Type: Application
    Filed: June 29, 2022
    Publication date: December 29, 2022
    Applicant: Imprint Energy, Inc.
    Inventors: Konstantin Tikhonov, Chaojun Shi, Christine Ho, Jesse Smithyman, Alex Gurr, Danny Hellebusch, Ehsan Faegh, Albert Aumentado, Pavel Khokhlov
  • Publication number: 20220384771
    Abstract: Provided are electronic circuits, comprising electrochemical cells directly integrated with other devices of the circuits, and methods of manufacturing these circuits. The direct integration occurs during cell manufacturing, which allows sharing components, reducing operation steps and failure points, and reducing cost and size of the circuits. For example, a portion of a cell enclosure may be formed by a circuit board, providing direct mechanical integration. More specifically, the cell is fabricated right on the circuit board. In the same or other examples, one or both cell current collectors extend outside of the cell boundary and used by other devices, providing direct electrical integration without a need for intermediate connections and eliminating additional failure points.
    Type: Application
    Filed: August 12, 2022
    Publication date: December 1, 2022
    Applicant: Imprint Energy, Inc.
    Inventors: Jesse Smithyman, Konstantin Tikhonov, Christine Ho, Alexander Gurr
  • Patent number: 11462720
    Abstract: Provided are electronic circuits, comprising electrochemical cells directly integrated with other devices of the circuits, and methods of manufacturing these circuits. The direct integration occurs during cell manufacturing, which allows sharing components, reducing operation steps and failure points, and reducing cost and size of the circuits. For example, a portion of a cell enclosure may be formed by a circuit board, providing direct mechanical integration. More specifically, the cell is fabricated right on the circuit board. In the same or other examples, one or both cell current collectors extend outside of the cell boundary and used by other devices, providing direct electrical integration without a need for intermediate connections and eliminating additional failure points.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: October 4, 2022
    Assignee: Imprint Energy, Inc.
    Inventors: Jesse Smithyman, Konstantin Tikhonov, Christine Ho, Alexander Gurr
  • Patent number: 11417913
    Abstract: The disclosure concerns an electrolyte, an electrolyte ink, a battery or other electrochemical cell including the same, and methods of making the electrolyte and electrochemical cell. The electrolyte includes an ionic liquid comprising a hydrophilic or hydrophobic anion, a multi-valent metal cation suitable for use in a battery cell, a polymer binder, and optional additives (e.g., a solid filler). The electrolyte ink includes components of the electrolyte and a solvent. The solvent and the polymer binder (or, when present, the solid filler) have a hydrophilicity, hydrophobicity or polarity similar to or matching that of the ionic liquid's anion, or form hydrogen bonds with the ionic liquid's anion. The electrolyte includes a solid inorganic filler that provides mechanical support form hydrogen bonds with the anion and/or a counterpart anion of the multi-valent metal cation, and links with a material in an adjacent layer of the electrochemical cell.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: August 16, 2022
    Assignee: Imprint Energy, Inc.
    Inventors: Chaojun Shi, Christine C. Ho, J. Devin Mackenzie
  • Patent number: 11271207
    Abstract: An electrical or electrochemical cell, c a cathode layer, an electrolyte layer, and an anode layer is disclosed. The cathode layer includes a first material providing a cathodic electric transport, charge storage or redox function. The electrolyte layer includes a polymer, a first electrolyte salt, and/or an ionic liquid. The anode layer includes a second material providing an anodic electric transport, charge storage or redox function. At least one of the cathode and anode layers includes the ionic liquid, a second electrolyte salt, and/or a transport-enhancing additive.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: March 8, 2022
    Assignee: Imprint Energy, Inc.
    Inventors: John Devin MacKenzie, Christine Chihfan Ho, Karthik Yogeeswaran, Po-Jen Cheng
  • Patent number: 11264643
    Abstract: An electrochemical cell includes solid-state, printable anode layer, cathode layer and non-aqueous gel electrolyte layer coupled to the anode layer and cathode layer. The electrolyte layer provides physical separation between the anode layer and the cathode layer, and comprises a composition configured to provide ionic communication between the anode layer and cathode layer by facilitating transmission of multivalent ions between the anode layer and the cathode layer.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: March 1, 2022
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, IMPRINT ENERGY, INC.
    Inventors: Paul K. Wright, James W. Evans, Christine Ho
  • Publication number: 20220029155
    Abstract: Provided are electrochemical cells and methods of manufacturing these cells. An electrochemical cell comprises a positive electrode and an electrolyte layer, printed over the positive electrode. In some examples, each of the positive electrode, electrolyte layer, and negative electrode comprises an ionic liquid enabling ionic transfer. The negative electrode comprises a negative active material layer (e.g., comprising zinc), printed over and directly interfacing the electrolyte layer. The negative electrode also comprises a negative current collector (e.g., copper foil) and a conductive pressure sensitive adhesive layer. The conductive pressure sensitive adhesive layer is disposed between and adhered to, directly interfaces, and provides electronic conductivity between the negative active material layer and the negative current collector. In some examples, the conductive pressure sensitive adhesive layer comprises carbon and/or metal particles (e.g., nickel, copper, indium, and/or silver).
    Type: Application
    Filed: October 6, 2021
    Publication date: January 27, 2022
    Applicant: Imprint Energy, Inc.
    Inventors: Qiang Zheng, Christine Ho, Jesse Smithyman
  • Patent number: 11171328
    Abstract: Provided are electrochemical cells and methods of manufacturing these cells. An electrochemical cell comprises a positive electrode and an electrolyte layer, printed over the positive electrode. In some examples, each of the positive electrode, electrolyte layer, and negative electrode comprises an ionic liquid enabling ionic transfer. The negative electrode comprises a negative active material layer (e.g., comprising zinc), printed over and directly interfacing the electrolyte layer. The negative electrode also comprises a negative current collector (e.g., copper foil) and a conductive pressure sensitive adhesive layer. The conductive pressure sensitive adhesive layer is disposed between and adhered to, directly interfaces, and provides electronic conductivity between the negative active material layer and the negative current collector. In some examples, the conductive pressure sensitive adhesive layer comprises carbon and/or metal particles (e.g., nickel, copper, indium, and/or silver).
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: November 9, 2021
    Assignee: Imprint Energy, Inc.
    Inventors: Qiang Zheng, Christine Ho, Jesse Smithyman
  • Publication number: 20210091411
    Abstract: An electrochemical cell includes solid-state, printable anode layer, cathode layer and non-aqueous gel electrolyte layer coupled to the anode layer and cathode layer. The electrolyte layer provides physical separation between the anode layer and the cathode layer, and comprises a composition configured to provide ionic communication between the anode layer and cathode layer by facilitating transmission of multivalent ions between the anode layer and the cathode layer.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 25, 2021
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, IMPRINT ENERGY, INC.
    Inventors: Paul K. Wright, James W. Evans, Christine Ho
  • Publication number: 20200411866
    Abstract: An electrical or electrochemical cell, c a cathode layer, an electrolyte layer, and an anode layer is disclosed. The cathode layer includes a first material providing a cathodic electric transport, charge storage or redox function. The electrolyte layer includes a polymer, a first electrolyte salt, and/or an ionic liquid. The anode layer includes a second material providing an anodic electric transport, charge storage or redox function. At least one of the cathode and anode layers includes the ionic liquid, a second electrolyte salt, and/or a transport-enhancing additive.
    Type: Application
    Filed: September 16, 2020
    Publication date: December 31, 2020
    Applicant: Imprint Energy, Inc.
    Inventors: John Devin MacKenzie, Christine Chihfan Ho, Karthik Yogeeswaran, Po-Jen Cheng
  • Publication number: 20200373628
    Abstract: The disclosure concerns an electrolyte, an electrolyte ink, a battery or other electrochemical cell including the same, and methods of making the electrolyte and electrochemical cell. The electrolyte includes an ionic liquid comprising a hydrophilic or hydrophobic anion, a multi-valent metal cation suitable for use in a battery cell, a polymer binder, and optional additives (e.g., a solid filler). The electrolyte ink includes components of the electrolyte and a solvent. The solvent and the polymer binder (or, when present, the solid filler) have a hydrophilicity, hydrophobicity or polarity similar to or matching that of the ionic liquid's anion, or form hydrogen bonds with the ionic liquid's anion. The electrolyte includes a solid inorganic filler that provides mechanical support form hydrogen bonds with the anion and/or a counterpart anion of the multi-valent metal cation, and links with a material in an adjacent layer of the electrochemical cell.
    Type: Application
    Filed: August 14, 2020
    Publication date: November 26, 2020
    Applicant: Imprint Energy, Inc.
    Inventors: Chaojun Shi, Christine C. Ho, J. Devin Mackenzie
  • Publication number: 20200365871
    Abstract: Provided are electronic circuits, comprising electrochemical cells directly integrated with other devices of the circuits, and methods of manufacturing these circuits. The direct integration occurs during cell manufacturing, which allows sharing components, reducing operation steps and failure points, and reducing cost and size of the circuits. For example, a portion of a cell enclosure may be formed by a circuit board, providing direct mechanical integration. More specifically, the cell is fabricated right on the circuit board. In the same or other examples, one or both cell current collectors extend outside of the cell boundary and used by other devices, providing direct electrical integration without a need for intermediate connections and eliminating additional failure points.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 19, 2020
    Applicant: Imprint Energy, Inc.
    Inventors: Jesse Smithyman, Konstantin Tikhonov, Christine Ho, Alexander Gurr
  • Patent number: 10826119
    Abstract: An electrochemical cell includes solid-state, printable anode layer, cathode layer and non-aqueous gel electrolyte layer coupled to the anode layer and cathode layer. The electrolyte layer provides physical separation between the anode layer and the cathode layer, and comprises a composition configured to provide ionic communication between the anode layer and cathode layer by facilitating transmission of multivalent ions between the anode layer and the cathode layer.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: November 3, 2020
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, IMPRINT ENERGY, INC.
    Inventors: Paul K. Wright, James W. Evans, Christine Ho
  • Patent number: 10818925
    Abstract: An electrical or electrochemical cell, including a cathode layer, an electrolyte layer, and an anode layer is disclosed. The cathode layer includes a first material providing a cathodic electric transport, charge storage or redox function. The electrolyte layer includes a polymer, a first electrolyte salt, and/or an ionic liquid. The anode layer includes a second material providing an anodic electric transport, charge storage or redox function. At least one of the cathode and anode layers includes the ionic liquid, a second electrolyte salt, and/or a transport-enhancing additive.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: October 27, 2020
    Assignee: Imprint Energy, Inc.
    Inventors: John Devin MacKenzie, Christine Chihfan Ho, Karthik Yogeeswaran, Po-Jen Cheng
  • Patent number: 10784540
    Abstract: The disclosure concerns an electrolyte, an electrolyte ink, a battery or other electrochemical cell including the same, and methods of making the electrolyte and electrochemical cell. The electrolyte includes an ionic liquid comprising a hydrophilic or hydrophobic anion, a multi-valent metal cation suitable for use in a battery cell, a polymer binder, and optional additives (e.g., a solid filler). The electrolyte ink includes components of the electrolyte and a solvent. The solvent and the polymer binder (or, when present, the solid filler) have a hydrophilicity, hydrophobicity or polarity similar to or matching that of the ionic liquid's anion, or form hydrogen bonds with the ionic liquid's anion. The electrolyte includes a solid inorganic filler that provides mechanical support form hydrogen bonds with the anion and/or a counterpart anion of the multi-valent metal cation, and links with a material in an adjacent layer of the electrochemical cell.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: September 22, 2020
    Assignee: Imprint Energy, Inc.
    Inventors: Chaojun Shi, Christine C. Ho, J. Devin Mackenzie
  • Publication number: 20200280056
    Abstract: Provided are electrochemical cells and methods of manufacturing these cells. An electrochemical cell comprises a positive electrode and an electrolyte layer, printed over the positive electrode. In some examples, each of the positive electrode, electrolyte layer, and negative electrode comprises an ionic liquid enabling ionic transfer. The negative electrode comprises a negative active material layer (e.g., comprising zinc), printed over and directly interfacing the electrolyte layer. The negative electrode also comprises a negative current collector (e.g., copper foil) and a conductive pressure sensitive adhesive layer. The conductive pressure sensitive adhesive layer is disposed between and adhered to, directly interfaces, and provides electronic conductivity between the negative active material layer and the negative current collector. In some examples, the conductive pressure sensitive adhesive layer comprises carbon and/or metal particles (e.g., nickel, copper, indium, and/or silver).
    Type: Application
    Filed: March 1, 2019
    Publication date: September 3, 2020
    Applicant: Imprint Energy, Inc.
    Inventors: Qiang Zheng, Christine Ho, Jesse Smithyman
  • Patent number: 10673042
    Abstract: Electrochemical cells with a protective film that is permeable to hydrogen, or that include a catalyst that facilitates formation of mobile hydrogen species, that promotes sequestration or gettering of hydrogen or oxygen, and/or that facilitates conversion of hydrogen or oxygen to H2O, are disclosed.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: June 2, 2020
    Assignee: Imprint Energy, Inc.
    Inventors: John Devin Mackenzie, Qiang Zheng, Jesse Smithyman, Christine Ho
  • Patent number: 10593961
    Abstract: The disclosure concerns an electrochemical cell including a cathode, an electrolyte, and an anode including an elemental metal or metal alloy. The electrolyte includes an electrolyte salt, an ionic liquid, and an optional first polymer binder. The electrolyte and/or the anode further includes a protective metal salt in an amount sufficient to (i) reduce or eliminate hydrogen evolution or open circuit side reactions in the electrochemical cell, or (ii) plate out onto or alloy with the anode metal or conductive additives in the anode. The electrochemical cell may further include a first current collector in contact with the cathode, and a second current collector in contact with the anode. The second current collector may include a metal or metal alloy. In such cells, the second current collector may further include the protective metal salt, and the protective metal salt may plate out onto or alloy with the metal or metal alloy of the second current collector.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: March 17, 2020
    Assignee: Imprint Energy, Inc.
    Inventors: John Devin MacKenzie, Jesse Smithyman, Michael Coleman, Christine C. Ho