Patents Assigned to Impulse Devices, Inc.
  • Publication number: 20060042088
    Abstract: A method of assembling a port assembly in a cavitation chamber, typically a spherical chamber, is provided. The method is comprised of the steps of boring a port in a cavitation chamber wall, positioning a cone-shaped member within a corresponding cone-shaped surface of a mounting ring, positioning the mounting ring within the port, and locking the mounting ring within the port with a retaining ring. The largest diameter of the cone-shaped member corresponds to the cavitation chamber internal surface. The member can be a window, gas feed-thru, liquid feed-thru, mechanical feed-thru, sensor, sensor coupler, transducer coupler or plug. The member can be secured within the mounting ring with an adhesive. The retaining ring can be coupled to the cavitation chamber external surface with one or more bolts. The port in the cavitation chamber is preferably cone-shaped with the largest diameter of the port corresponding to the cavitation chamber external surface.
    Type: Application
    Filed: September 15, 2004
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, David Beck
  • Publication number: 20060045819
    Abstract: A port assembly for use with a single piece cavitation chamber, typically a spherical chamber is provided. The port assembly includes a cone-shaped port, a cone-shaped mounting ring and a central member mounted within the mounting ring. The mounting ring is located within the chamber prior to the final assembly of the chamber itself, i.e., at a time in which the chamber is comprised of multiple pieces. After the final assembly of the chamber is complete, a central member such as a window, plug, gas feed-thru, liquid feed-thru, mechanical feed-thru or sensor assembly is placed within the chamber. The mounting ring is then pulled into place within the cone-shaped port, followed by the central member. To expedite assembly, specialized tools can be used to pull the mounting ring and the central member into place.
    Type: Application
    Filed: August 25, 2004
    Publication date: March 2, 2006
    Applicant: Impulse Devices, Inc.
    Inventors: Ross Tessien, Dario Gaitan, Daniel Phillips
  • Publication number: 20060043840
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped to limit the contact area between the head mass of the driver assembly and the cavitation chamber to which the driver is attached, the contact area being limited to a centrally located contact region. The area of contact is controlled by limiting its size and/or shaping its surface.
    Type: Application
    Filed: May 6, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, Daniel Phillips, Brant Callahan
  • Publication number: 20060043838
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped to limit the contact area between the head mass of the driver assembly and the cavitation chamber to which the driver is attached, the contact area being limited to a centrally located contact region. The area of contact is controlled by limiting its size and/or shaping its surface.
    Type: Application
    Filed: May 6, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices, Inc.
    Inventors: Ross Tessien, David Beck
  • Publication number: 20060042089
    Abstract: A method of assembling multiple port assemblies in a cavitation chamber is provided. The method is comprised of boring at least two ports of different sizes in a cavitation chamber wall of the cavitation chamber. The external port diameter of the smaller port is smaller than that port's internal port diameter. A member selected from the group consisting of windows, plugs, feed-throughs, sensors, transducers and couplers is inserted into the chamber through the larger port and positioned within the smaller port. The member can be secured within the smaller port with an adhesive. A mounting ring/retaining ring, retaining coupler or port cover seals the second, larger port. A second member selected from the group consisting of windows, plugs, feed-throughs, sensors, transducers and couplers can be positioned within a cone-shaped port within the mounting ring or retaining coupler. A feed-thru, sensor, transducer or coupler can be integrated into the port cover.
    Type: Application
    Filed: September 16, 2004
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, David Beck
  • Publication number: 20060043826
    Abstract: An acoustic driver assembly for use with a spherical cavitation chamber is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass, coupled together with a centrally located threaded means (e.g., all thread, bolt, etc.). The driver assembly is either attached to the exterior surface of the spherical cavitation chamber with the same threaded means, a different threaded means, or a more permanent coupling means such as brazing, diffusion bonding or epoxy. In at least one embodiment, the transducer is comprised of a pair of piezo-electric transducers, preferably with the adjacent surfaces of the piezo-electric transducers having the same polarity. The surface of the head mass that is adjacent to the external surface of the chamber is non-flat and has a spherical curvature less than the spherical curvature of the external surface of the chamber, thus providing a ring of contact between the acoustic driver and the cavitation chamber.
    Type: Application
    Filed: March 18, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, Dario Gaitan, Daniel Phillips
  • Publication number: 20060043830
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped to limit the contact area between the head mass of the driver assembly and the cavitation chamber to which the driver is attached, the contact area being limited to a centrally located contact region. The area of contact is controlled by limiting its size and/or shaping its surface.
    Type: Application
    Filed: May 6, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, David Beck
  • Publication number: 20060043837
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface, is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped so that only a ring of contact is made between the outer perimeter of the head mass of the driver assembly and the cavitation chamber to which the driver is attached. The area of the contact ring is controlled by shaping its surface.
    Type: Application
    Filed: May 5, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, David Beck
  • Publication number: 20060042087
    Abstract: A method of assembling multiple port assemblies in a single cavitation chamber, typically a spherical chamber, is provided.
    Type: Application
    Filed: September 9, 2004
    Publication date: March 2, 2006
    Applicant: Impulse Devices, Inc.
    Inventors: Ross Tessien, Dario Gaitan, Daniel Phillips
  • Publication number: 20060043828
    Abstract: An acoustic driver assembly for use with a spherical cavitation chamber is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass, coupled together with a centrally located threaded means (e.g., all thread, bolt, etc.). The driver assembly is either attached to the exterior surface of the spherical cavitation chamber with the same threaded means, a different threaded means, or a more permanent coupling means such as brazing, diffusion bonding or epoxy. In at least one embodiment, the transducer is comprised of a pair of piezo-electric transducers, preferably with the adjacent surfaces of the piezo-electric transducers having the same polarity. The surface of the head mass that is in contact with the external surface of the chamber has a spherical curvature equivalent to the spherical curvature of the external surface of the chamber, thus providing maximum surface contact between the driver assembly and the chamber.
    Type: Application
    Filed: March 21, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, Dario Gaitan, Daniel Phillips
  • Publication number: 20060044348
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped to limit the contact area between the head mass of the driver assembly and the cavitation chamber to which the driver is attached, the contact area being limited to a centrally located contact region. The area of contact is controlled by limiting its size and/or shaping its surface.
    Type: Application
    Filed: May 6, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, David Beck
  • Publication number: 20060043833
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface, is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped so that only a ring of contact is made between the outer perimeter of the head mass of the driver assembly and the cavitation chamber to which the driver is attached. The area of the contact ring is controlled by shaping its surface.
    Type: Application
    Filed: May 5, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, David Beck
  • Publication number: 20060043832
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface, is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped so that only a ring of contact is made between the outer perimeter of the head mass of the driver assembly and the cavitation chamber to which the driver is attached. The area of the contact ring is controlled by shaping its surface.
    Type: Application
    Filed: May 5, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, David Beck
  • Publication number: 20060043835
    Abstract: An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped to limit the contact area between the head mass of the driver assembly and the cavitation chamber to which the driver is attached, the contact area being limited to a centrally located contact region. The area of contact is controlled by limiting its size and/or shaping its surface.
    Type: Application
    Filed: May 6, 2005
    Publication date: March 2, 2006
    Applicant: Impulse Devices Inc.
    Inventors: Ross Tessien, Daniel Phillips, Brant Callahan
  • Publication number: 20060039517
    Abstract: A method of fabricating a spherical cavitation chamber is provided. Depending upon the chamber's composition and wall thickness, chambers fabricated with the disclosed techniques can be used with either low or high pressure systems. During chamber fabrication, initially two spherical half portions are fabricated and then the two half portions are joined together to form the desired cavitation chamber. During the fabrication of each chamber half, the interior spherical surface is completed first and then the outer spherical surface. Prior to joining the two spherical cavitation chamber halves, the surfaces to be mated are finished, preferably to a surface flatness of at least ±0.01 inches. Brazing is used to join the chamber halves together. The brazing material is preferably in the form of a ring-shaped sheet with outside and inside diameters of approximately the same size as the cavitation sphere's outside and inside diameters. Preferably the brazing operation is performed under vacuum conditions.
    Type: Application
    Filed: August 23, 2004
    Publication date: February 23, 2006
    Applicant: Impulse Devices, Inc.
    Inventor: Ross Tessien
  • Publication number: 20060034705
    Abstract: A method and apparatus of circulating cavitation fluid within a cavitation fluid circulatory system is provided. The system provides a means of circulating the cavitation fluid through a cavitation chamber, before or during cavitation chamber operation, as well as a means of draining and filling the chamber with minimal, if any, exposure of the cavitation fluid to the outside environment. The apparatus includes a network of conduits coupling the cavitation chamber to a cavitation fluid reservoir and at least one external fluid pump. Preferably the cavitation fluid reservoir serves the dual function of fluid reservoir and degassing chamber. Manipulation of various valves within the conduit network allows the cavitation fluid to either be pumped from the reservoir into the cavitation chamber or from the cavitation chamber into the reservoir.
    Type: Application
    Filed: December 1, 2004
    Publication date: February 16, 2006
    Applicant: Impulse Devices, Inc.
    Inventors: Ross Tessien, Dario Gaitan, David Beck
  • Publication number: 20060034700
    Abstract: A method of degassing cavitation fluid using a closed-loop cavitation fluid circulatory system is provided. The procedure is comprised of multiple stages. During the first stage, the cavitation fluid is continuously circulated through the cavitation chamber, reservoir and the circulatory system while the fluid within the chamber is cavitated. A vacuum system coupled to the fluid reservoir periodically degasses the fluid. During the second stage, pumping of the cavitation fluid through the chamber is discontinued. Gases released by the cavitation process are periodically pumped out of the chamber and periodically eliminated by the vacuum system. A third stage, although not required, can be used to further eliminate gases dissolved within the cavitation fluid. During the third stage cavities are formed within the cavitation fluid within the chamber using any of a variety of means such as neutron bombardment, laser vaporization or localized heating.
    Type: Application
    Filed: December 1, 2004
    Publication date: February 16, 2006
    Applicant: Impulse Devices, Inc.
    Inventors: Ross Tessien, Dario Gaitan
  • Publication number: 20060034701
    Abstract: A method of degassing cavitation fluid using a closed-loop cavitation fluid circulatory system is provided. The procedure is comprised of multiple stages. During the first stage, the cavitation fluid contained within the reservoir is degassed using an attached vacuum system. During the second stage, the cavitation fluid is pumped into the cavitation chamber and cavitated. As a result of the cavitation process, gases dissolved within the cavitation fluid are released. The circulatory system provides a means of pumping the gases from the chamber and the vacuum system provides a means of periodically eliminating the gases from the system. A third stage, although not required, can be used to further eliminate gases dissolved within the cavitation fluid. During the third stage cavities are formed within the cavitation fluid within the chamber using any of a variety of means such as neutron bombardment, laser vaporization or localized heating.
    Type: Application
    Filed: December 1, 2004
    Publication date: February 16, 2006
    Applicant: Impulse Devices, Inc.
    Inventors: Ross Tessien, Dario Gaitan
  • Publication number: 20060018420
    Abstract: A method and apparatus for regulating the temperature of the cavitation medium for a cavitation chamber is provided. A heat exchange fluid is pumped through a heat exchange conduit that passes through a portion of the cavitation chamber. An external heat exchanger, coupled either directly or indirectly to the heat exchange conduit, regulates the temperature of the heat exchange fluid which, in turn, regulates the temperature of cavitation medium within the cavitation chamber. The heat exchanger can be used to lower the temperature of the cavitation medium to a temperature less than the ambient temperature; to withdraw excess heat from the cavitation medium; or to heat the cavitation medium to the desired operating temperature. The heat exchanger can utilize heated heat exchange fluid, cooled heat exchange fluid, thermoelectric coolers, heat sinks, refrigeration systems or heaters.
    Type: Application
    Filed: October 25, 2004
    Publication date: January 26, 2006
    Applicant: Impulse Devices, Inc.
    Inventor: Ross Tessien
  • Publication number: 20060018419
    Abstract: A method and apparatus for regulating the temperature of the cavitation medium for a cavitation chamber is provided. The cavitation medium is pumped through the cavitation chamber through a pair of chamber inlets and an external conduit connecting the two inlets. An external heat exchanger is used to regulate the cavitation medium temperature, the heat exchanger being either directly or indirectly coupled to the conduit. The cavitation medium can be circulated through the heat exchanger during chamber operation or, once the desired cavitation medium temperature is achieved, operation of the circulation system can be suspended. The heat exchanger can be used to lower the temperature of the cavitation medium to a temperature less than the ambient temperature; to withdraw excess heat from the cavitation medium; or to heat the cavitation medium to the desired operating temperature.
    Type: Application
    Filed: October 7, 2004
    Publication date: January 26, 2006
    Applicant: Impulse Devices, Inc.
    Inventor: Ross Tessien