Abstract: A portable ultrasound imaging system employs a mechanically focused multi-element circular annular transducer that is mechanically scanned using a motor. Received echoes are processed to form two dimensional gray scale B mode images or two dimensional color tissue flow images which are displayed on a display unit. In case of color flow imaging, a high pulse repetition frequency imaging sequence is employed for a reasonable frame rate and special down-sampling techniques are applied to achieve an effective low pulse repetition frequency for flow estimation with enough signal to noise ratio. The system also includes a docking subsystem which charges a system battery and transfers patient and image data between a PACS system, workstation or other information system and the portable ultrasound imaging system.
Abstract: An ultrasound imaging system that can automatically adjust the imaging parameters based on the original or processed received echoes from the target is presented in this disclosed technology. The adjustment is done through a closed loop negative feedback control system iteratively. Imaging performance evaluation parameters calculated from the received echoes, original or processed, are compared with preset thresholds that represent desired optimal imaging performances. The differences are used to calculate the adjustment for the imaging parameters. The system reaches to an optimal system image quality for the current target or stops when a maximum number of iterations is reached.
Abstract: A portable ultrasound imaging system employs a mechanically focused multi-element circular annular transducer that is mechanically scanned using a motor. Received echoes are processed to form two dimensional gray scale B mode images or two dimensional color tissue flow images which are displayed on a display unit. In case of color flow imaging, a high pulse repetition frequency imaging sequence is employed for a reasonable frame rate and special down-sampling techniques are applied to achieve an effective low pulse repetition frequency for flow estimation with enough signal to noise ratio. The system also includes a docking subsystem which charges a system battery and transfers patient and image data between a PACS system, workstation or other information system and the portable ultrasound imaging system.
Abstract: An ultrasound imaging system that can automatically adjust the imaging parameters based on the original or processed received echoes from the target is presented in this disclosed technology. The adjustment is done through a closed loop negative feedback control system iteratively. Imaging performance evaluation parameters calculated from the received echoes, original or processed, are compared with preset thresholds that represent desired optimal imaging performances. The differences are used to calculate the adjustment for the imaging parameters. The system reaches to an optimal system image quality for the current target or stops when a maximum number of iterations is reached.