Abstract: The disclosure provided herein relates generally to mesenchymal-like stem cells “hES-T-MiSC” or “T-MSC” and the method of producing the stem cells. The method comprises culturing embryonic stem cells under conditions that the embryonic stem cells develop through an intermediate differentiation of trophoblasts, and culturing the differentiated trophoblast in hES-T-MSC or T-MSC, T-MSC derived cells and cell lineages “T-MSC-DL” are also described. Disclosed also herein are solutions and pharmaceutical compositions comprising the T-MSC and/or T-MSC-DL, methods of making the T-MSC and T-MSC-DL, and methods of using the T-MSC and T-MSC-DL for treatment and prevention of diseases, specifically. T-MSC and T-MSC-DL are used as immunosuppressive agents to treat multiple sclerosis and autoimmune diseases.
Type:
Grant
Filed:
January 23, 2019
Date of Patent:
November 24, 2020
Assignees:
IMSTEM BIOTECHNOLOGY, INC., UNIVERSITY OF CONNECTICUT
Abstract: The present invention relates to methods of generating and expanding hitman embryonic stem cell derived mesenchymal-like stem/stromal cells. These hES-MSCs are characterized at least in part by the low level of expression of IL-6. These cells are useful for the prevention and treatment of T cell related autoimmune disease, especially multiple sclerosis, as well as for delivering agents across the blood-brain barrier and the blood-spinal cord barrier. Also provided is a method of selecting clinical grade hES-MSC and a method of modifying MSC to produced a MSC with specific biomarker profile. The modified MSC are useful for treatment of various diseases.
Abstract: The disclosure provided herein relates generally to mesenchymal-like stem cells “hES-T-MiSC” or “T-MSC” and the method of producing the stem cells. The method comprises culturing embryonic stem cells under conditions that the embryonic stem cells develop through an intermediate differentiation of trophoblasts, and culturing the differentiated trophoblasts to hES-T-MSC or T-MSC, T-MSC derived cells and cell lineages “T-MSC-DL” are also described. Disclosed also herein are solutions and pharmaceutical compositions comprising the T-MSC and/or T-MSC-DL, methods of making the T-MSC and T-MSC-DL, and methods of using the T-MSC and T-MSC-DL for treatment and prevention of diseases, specifically, T-MSC and T-MSC-DL are used as immunosuppressive agents to treat multiple sclerosis and autoimmune diseases.
Type:
Grant
Filed:
June 27, 2017
Date of Patent:
March 12, 2019
Assignees:
IMSTEM BIOTECHNOLOGY, INC., University of Connecticut
Abstract: The present invention relates to methods of generating and expanding hitman embryonic stem eel! derived mesenchymal-like stem/siromal cells. These hES-MSCs are characterized at least in part by the low level of expression of IL-6. These cells are useful for the prevention and treatment of T cell related autoimmune disease, especially multiple sclerosis, as well as for delivering agents across the blood-brain barrier and the blood-spinal cord barrier. Also provided is a method of selecting clinical grade hES-MSC and a method of modifying MSC to produced a MSC with specific biomarker profile. The modified MSC are useful for treatment of various diseases.
Abstract: The disclosure provided herein relates generally to mesenchymal-like stem cells “hES-T-MiSC” or “T-MSC” and the method of producing the stem cells. The method comprises culturing embryonic stem cells under conditions that the embryonic stem cells develop through an intermediate differentiation of trophoblasts, and culturing the differentiated trophoblasts to hES-T-MSC or T-MSC, T-MSC derived cells and cell lineages “T-MSC-DL” are also described. Disclosed also herein are solutions and pharmaceutical compositions comprising the T-MSC and/or T-MSC-DL, methods of making the T-MSC and T-MSC-DL, and methods of using the T-MSC and T-MSC-DL for treatment and prevention of diseases, specifically, T-MSC and T-MSC-DL are used as immunosuppressive agents to treat multiple sclerosis and autoimmune diseases.
Type:
Grant
Filed:
July 11, 2013
Date of Patent:
August 8, 2017
Assignees:
IMSTEM BIOTECHNOLOGY, INC., UNIVERSITY OF CONNECTICUT