Patents Assigned to In-Situ, Inc.
  • Patent number: 11920987
    Abstract: Provided herein is a differential temperature sensor which utilizes multiple temperature sensors to quickly and accurately calculate ambient fluid temperature with a reduced response time. The provided systems and methods utilize a first fluid temperature sensor and a second probe temperature sensor to account for the thermal impact of the device on the ambient fluid temperature and the effect of heat within the device, or temperature difference between the probe and fluid temperature, on the first fluid temperature sensor measurement.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: March 5, 2024
    Assignee: In-Situ, Inc.
    Inventors: Benjamin Kimbell, Elijah Lyle Scott, Nathan T. Baltz
  • Patent number: 11668691
    Abstract: Provided are multi-parameter sonde systems having a unique integrated user interface for ease of set-up and control, service and maintenance, even in the field and without accessory controllers. The necessary components, such as central processing unit, display and accelerometer are positioned in a water-tight housing, with the display configured for convenient observability and readability. A plurality of sensors provide electronic signals to the CPU, such as by a measurement subsystem. Upon a controlled change in orientation or a force application to the sonde, the display via the accelerometer provides a desired output display configuration.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: June 6, 2023
    Assignee: IN-SITU, INC.
    Inventor: Duane B. McKee
  • Publication number: 20230079652
    Abstract: Provided are load bearing universal adaptors for connecting electrical cables in a watertight configuration. The mechanical advantage associated with wedges in a tapered cavity ensures that load is appropriately transferred to the walls of the wedge housing. In this manner, a load applied to the electrical cable is at least partially provided to the walls of the system rather than acting to pull the cable out of the adaptor, and the object to which the adaptor is connected, such as a terminal block.
    Type: Application
    Filed: February 25, 2021
    Publication date: March 16, 2023
    Applicant: IN-SITU, INC.
    Inventors: Michael IX, Aaron BEESE, Elijah Lyle SCOTT
  • Patent number: 11349251
    Abstract: Provided are load bearing universal adaptors for connecting electrical cables in a watertight configuration. The mechanical advantage associated with wedges in a tapered cavity ensures that load is appropriately transferred to the walls of the wedge housing and, as the load increases, the gripping force on the electrical cable increases. In this manner, a load applied to the electrical cable is at least partially provided to the walls of the system rather than acting to pull the cable out of the adaptor, and the object to which the adaptor is connected, such as a terminal block.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: May 31, 2022
    Assignee: In-Situ, Inc.
    Inventors: Michael Ix, Aaron Beese, Elijah Lyle Scott
  • Publication number: 20220163406
    Abstract: Provided herein is a differential temperature sensor which utilizes multiple temperature sensors to quickly and accurately calculate ambient fluid temperature with a reduced response time. The provided systems and methods utilize a first fluid temperature sensor and a second probe temperature sensor to account for the thermal impact of the device on the ambient fluid temperature and the effect of heat within the device, or temperature difference between the probe and fluid temperature, on the first fluid temperature sensor measurement.
    Type: Application
    Filed: November 2, 2021
    Publication date: May 26, 2022
    Applicant: In-Situ, Inc.
    Inventors: Benjamin KIMBELL, Elijah Lyle SCOTT, Nathan T. BALTZ
  • Patent number: 11181427
    Abstract: Provided herein is a differential temperature sensor which utilizes multiple temperature sensors to quickly and accurately calculate ambient fluid temperature with a reduced response time. The provided systems and methods utilize a first fluid temperature sensor and a second probe temperature sensor to account for the thermal impact of the device on the ambient fluid temperature and the effect of heat within the device, or temperature difference between the probe and fluid temperature, on the first fluid temperature sensor measurement.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: November 23, 2021
    Assignee: In-Situ, Inc.
    Inventors: Benjamin Kimbell, Elijah Lyle Scott, Nathan T. Baltz
  • Publication number: 20210265772
    Abstract: Provided are load bearing universal adaptors for connecting electrical cables in a watertight configuration. The mechanical advantage associated with wedges in a tapered cavity ensures that load is appropriately transferred to the walls of the wedge housing and, as the load increases, the gripping force on the electrical cable increases. In this manner, a load applied to the electrical cable is at least partially provided to the walls of the system rather than acting to pull the cable out of the adaptor, and the object to which the adaptor is connected, such as a terminal block.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 26, 2021
    Applicant: In-Situ, Inc.
    Inventors: Michael IX, Aaron BEESE, Elijah Lyle SCOTT
  • Patent number: 11060956
    Abstract: Provided are low flow groundwater fluid sampling systems and related methods of collecting fluid samples, including a low flow pump, flow cell, waste container and a communication device in communication with those components. In this manner, the low flow pump may be controlled to ensure a desired constant flow-rate is achieved, and a remote operator may monitor the status of fluid being pumped to the flow cell with the communication device, such as with a portable electronic device, including a smart phone. The system may alert the operator that fluid is ready to be collected for sampling, including at an off-site laboratory. Particularly useful applications are for monitoring groundwater quality and contamination.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: July 13, 2021
    Assignee: IN-SITU, INC.
    Inventors: Matthew Trumbo, Benjamin Kimbell
  • Publication number: 20210199577
    Abstract: Provided is a cleanable conductivity sensor and related methods having a distal sensing end in which active sensing elements are positioned and an outer fin specially configured to minimize unwanted interference without impacting the ability for automated cleaning of the distal sensing end. A rotatable wiper or brush may be periodically rotated over the distal sensing end, thereby removing unwanted biological build-up and avoiding fouling, thereby increasing the sensor deployment time without active intervention and maintenance.
    Type: Application
    Filed: January 6, 2021
    Publication date: July 1, 2021
    Applicant: In-Situ, Inc.
    Inventors: Elijah Lyle SCOTT, Duane B. McKEE, Steven Collin SEWELL
  • Publication number: 20210199636
    Abstract: Provided are multi-parameter sonde systems having a unique integrated user interface for ease of set-up and control, service and maintenance, even in the field and without accessory controllers. The necessary components, such as central processing unit, display and accelerometer are positioned in a water-tight housing, with the display configured for convenient observability and readability. A plurality of sensors provide electronic signals to the CPU, such as by a measurement subsystem. Upon a controlled change in orientation or a force application to the sonde, the display via the accelerometer provides a desired output display configuration.
    Type: Application
    Filed: January 6, 2021
    Publication date: July 1, 2021
    Applicant: In-Situ, Inc.
    Inventor: Duane B. McKee
  • Patent number: 10989657
    Abstract: Provided are turbidometers and fluorometers having a unique form-factor to accommodate a number of optical components in a confined geometry. This provides the ability to compensate for change in light intensity from an optical source even in a closed-loop manner. The ability to package reference and signal detectors, along with a relatively large diameter LED light source in a confined geometry is particularly suited for applications requiring small-diameter sensors, such as multi-parameter sonde devices having a total diameter that is in the sub-two inch range.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 27, 2021
    Assignee: In-Situ, Inc.
    Inventors: Nathan T. Baltz, Steven Collin Sewell
  • Patent number: 10914718
    Abstract: Provided are multi-parameter sonde systems having a unique form-factor, wherein the plurality of sensors are arranged in a tight-fit configuration. This provides a single distal sensing surface and minimal separation distance between adjacent sensors. The sensors may be pie shaped with an interlocking feature to tightly hold the sensors together, with a sensor guard disposed over the outer surface of the interlocked sensors. Sensor-guards disclosed herein may have an integrated sensor storage and sensor guard configuration, thereby avoiding a need for a separate storage cup and that are configured to minimize unwanted biological growth. Also provided are uniquely shaped individual sensors having interlocking features to hold several sensors together in a sonde.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: February 9, 2021
    Assignee: In-Situ, Inc.
    Inventors: Elijah Lyle Scott, Steven Collin Sewell, Duane B. McKee
  • Patent number: 10908140
    Abstract: Provided are multi-parameter sonde systems having a unique integrated user interface for ease of set-up and control, service and maintenance, even in the field and without accessory controllers. The necessary components, such as central processing unit, display and accelerometer are positioned in a water-tight housing, with the display configured for convenient observability and readability. A plurality of sensors provide electronic signals to the CPU, such as by a measurement subsystem. Upon a controlled change in orientation or a force application to the sonde, the display via the accelerometer provides a desired output display configuration.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: February 2, 2021
    Assignee: IN-SITU, INC.
    Inventor: Duane B. McKee
  • Patent number: 10890526
    Abstract: Provided is a cleanable conductivity sensor and related methods having a distal sensing end in which active sensing elements are positioned and an outer fin specially configured to minimize unwanted interference without impacting the ability for automated cleaning of the distal sensing end. A rotatable wiper or brush may be periodically rotated over the distal sensing end, thereby removing unwanted biological build-up and avoiding fouling, thereby increasing the sensor deployment time without active intervention and maintenance.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: January 12, 2021
    Assignee: In-Situ, Inc.
    Inventors: Elijah Lyle Scott, Duane B. McKee, Steven Collin Sewell
  • Publication number: 20200240878
    Abstract: Provided are low flow groundwater fluid sampling systems and related methods of collecting fluid samples, including a low flow pump, flow cell, waste container and a communication device in communication with those components. In this manner, the low flow pump may be controlled to ensure a desired constant flow-rate is achieved, and a remote operator may monitor the status of fluid being pumped to the flow cell with the communication device, such as with a portable electronic device, including a smart phone. The system may alert the operator that fluid is ready to be collected for sampling, including at an off-site laboratory. Particularly useful applications are for monitoring groundwater quality and contamination.
    Type: Application
    Filed: January 30, 2020
    Publication date: July 30, 2020
    Applicant: In-Situ, Inc.
    Inventors: Matthew TRUMBO, Benjamin KIMBELL
  • Patent number: 10591389
    Abstract: Provided are low flow groundwater fluid sampling systems and related methods of collecting fluid samples, including a low flow pump, flow cell, waste container and a communication device in communication with those components. In this manner, the low flow pump may be controlled to ensure a desired constant flow-rate is achieved, and a remote operator may monitor the status of fluid being pumped to the flow cell with the communication device, such as with a portable electronic device, including a smart phone. The system may alert the operator that fluid is ready to be collected for sampling, including at an off-site laboratory. Particularly useful applications are for monitoring groundwater quality and contamination.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 17, 2020
    Assignee: IN-SITU, INC.
    Inventors: Matthew Trumbo, Benjamin Kimbell
  • Patent number: 10429369
    Abstract: Provided are multi-parameter sonde systems having a unique integrated user interface for ease of set-up and control, service and maintenance, even in the field and without accessory controllers. The necessary components, such as central processing unit, display and accelerometer are positioned in a water-tight housing, with the display configured for convenient observability and readability. A plurality of sensors provide electronic signals to the CPU, such as by a measurement subsystem. Upon a controlled change in orientation or a force application to the sonde, the display via the accelerometer provides a desired output display configuration.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: October 1, 2019
    Assignee: IN-SITU, INC.
    Inventor: Duane B. McKee
  • Patent number: 10393654
    Abstract: Provided are turbidometers and fluorometers having a unique form-factor to accommodate a number of optical components in a confined geometry. This provides the ability to compensate for change in light intensity from an optical source even in a closed-loop manner. The ability to package reference and signal detectors, along with a relatively large diameter LED light source in a confined geometry is particularly suited for applications requiring small-diameter sensors, such as multi-parameter sonde devices having a total diameter that is in the sub-two inch range.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: August 27, 2019
    Assignee: IN-SITU, INC.
    Inventors: Nathan T. Baltz, Steven Collin Sewell
  • Patent number: 10365097
    Abstract: Provided herein are sondes having a pressure sensor that is separated from active sensing portions of the other sonde sensor or sensors by a longitudinal distance along the sonde. The pressure sensor may be positioned in the base portion of the sonde, with removable sensors connected thereto with a sensor plane at a distal end of the sensors that measures any number of parameters associated with the liquid in which the sonde is immersed. An orientation sensor positioned in the base portion determines an orientation angle of the sonde that, in combination with the depth determined at the pressure sensor location by the pressure sensor, provides the ability to determine the actual depth of the sensor plane, irrespective of orientation angle. Accordingly, improved depth measurement is achieved, without having to confine placement of the pressure sensor at the sensor plane.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: July 30, 2019
    Assignee: IN-SITU, INC.
    Inventors: Ashley Steinbach, Duane B. McKee
  • Patent number: 10302616
    Abstract: Provided are multi-parameter sonde systems having a unique form-factor, wherein the plurality of sensors are arranged in a tight-fit configuration. This provides a single distal sensing surface and minimal separation distance between adjacent sensors. The sensors may be pie shaped with an interlocking feature to tightly hold the sensors together, with a sensor guard disposed over the outer surface of the interlocked sensors. Sensor-guards disclosed herein may have an integrated sensor storage and sensor guard configuration, thereby avoiding a need for a separate storage cup and that are configured to minimize unwanted biological growth. Also provided are uniquely shaped individual sensors having interlocking features to hold several sensors together in a sonde.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 28, 2019
    Assignee: IN-SITU, INC.
    Inventors: Elijah Lyle Scott, Steven Collin Sewell, Duane B. McKee