Patents Assigned to Inbiose N.V.
  • Patent number: 12098403
    Abstract: The present invention relates to genetically engineered organisms, especially microorganisms such as bacteria and yeasts, for the production of added value bio-products such as specialty saccharide, activated saccharide, nucleoside, glycoside, glycolipid or glycoprotein. More specifically, the present invention relates to host cells that are metabolically engineered so that they can produce said valuable specialty products in large quantities and at a high rate by bypassing classical technical problems that occur in biocatalytical or fermentative production processes.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: September 24, 2024
    Assignee: Inbiose N.V.
    Inventors: Jo Maertens, Joeri Beauprez, Marjan De Mey
  • Publication number: 20230399670
    Abstract: This disclosure is in the technical field of synthetic biology and metabolic engineering. More particularly, this disclosure is in the technical field of fermentation of metabolically engineered microorganisms. This disclosure describes engineered micro-organisms able to synthesize sialylated compounds via an intracellular biosynthesis route. These micro-organisms can dephosphorylate N-acetylglucosamine-6-phosphate to N-acetyl glucosamine and convert the N-acetylglucosamine to N-acetylmannosamine. These micro-organisms also have the ability to convert N-acetylmannosamine to N-acetyl-neuraminate.
    Type: Application
    Filed: November 23, 2022
    Publication date: December 14, 2023
    Applicant: Inbiose N.V.
    Inventors: Joeri Beauprez, Pieter Coussement, Dries Van Herpe, Gert Peters, Annelies Vercauteren
  • Patent number: 10738336
    Abstract: The present invention relates to mutated and/or transformed microorganisms for the synthesis of various compounds. More specifically, the present invention discloses microorganisms mutated in the genes encoding for the regulators ArcA and IclR. The latter mutations result in a significant upregulation of the genes that are part of the colanic acid operon. Hence, said microorganisms are useful for the synthesis of any compound being part of the colanic acid pathway such as GDP-fucose, GDP-mannose and colanic acid, and/or, can be further used—starting form GDP-fucose as a precursor—to synthesize fucosylated oligosaccharides or—starting from GDP-mannose as a precursor—to synthesize mannosylated oligosaccharides. In addition, mutations in the genes coding for the transcriptional regulators ArcA and IclR lead to an acid resistance phenotype in the exponential growth phase allowing the synthesis of pH sensitive molecules or organic acids.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: August 11, 2020
    Assignee: Inbiose N.V.
    Inventors: Joeri Beauprez, Gaspard Lequeux, Jo Maertens
  • Patent number: 9951362
    Abstract: The present invention relates to mutated and/or transformed microorganisms for the synthesis of various compounds. More specifically, the present invention discloses microorganisms mutated in the genes encoding for the regulators ArcA and IclR. The latter mutations result in a significant upregulation of the genes that are part of the colanic acid operon. Hence, said microorganisms are useful for the synthesis of any compound being part of the colanic acid pathway such as GDP-fucose, GDP-mannose and colanic acid, and/or, can be further used—starting form GDP-fucose as a precursor—to synthesize fucosylated oligosaccharides or—starting from GDP-mannose as a precursor—to synthesize mannosylated oligosaccharides. In addition, mutations in the genes coding for the transcriptional regulators ArcA and IclR lead to an acid resistance phenotype in the exponential growth phase allowing the synthesis of pH sensitive molecules or organic acids.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: April 24, 2018
    Assignee: Inbiose N.V.
    Inventors: Joeri Beauprez, Gaspard Lequeux, Jo Maertens