Abstract: A system and method in various embodiments implements a virtual spectrum band stacking technique facilitating spectrum sharing by converting and combining spectrum bands consisting of several different RF channels, common air interfaces, and radio channel protocols in the radio frequency channel domain to form IP Virtual Radio Channels (IP-VRCs) in the packet data domain. This virtual spectrum stacking technique combines the transmissions of contiguous and non-contiguous RF channels with differing physical layers into IP-VRCs. This technique enables simultaneous parallel high-speed wireless transmission; virtual radio channel hopping for enhanced security; and customized security schemes for different IP-VRC Groups. The deployment of the combination of IP-VRC Groups; Universal “Small Cell” Base Stations; and Universal Wireless End-Point Devices allows the aggregation of all available spectrum bands for use within a building environment.
Abstract: A system and method in various embodiments implements a virtual spectrum band stacking technique facilitating spectrum sharing by converting and combining spectrum bands consisting of several different RF channels, common air interfaces, and radio channel protocols in the radio frequency channel domain to form IP Virtual Radio Channels (IP-VRCs) in the packet data domain. This virtual spectrum stacking technique combines the transmissions of contiguous and non-contiguous RF channels with differing physical layers into IP-VRCs. This technique enables simultaneous parallel high-speed wireless transmission; virtual radio channel hopping for enhanced security; and customized security schemes for different IP-VRC Groups. The deployment of the combination of IP-VRC Groups; Universal “Small Cell” Base Stations; and Universal Wireless End-Point Devices allows the aggregation of all available spectrum bands for use within a building environment.
Abstract: A system and method in various embodiments implements a virtual spectrum band stacking technique facilitating spectrum sharing by converting and combining spectrum bands consisting of several different RF channels, common air interfaces, and radio channel protocols in the radio frequency channel domain to form IP Virtual Radio Channels (IP-VRCs) in the packet data domain. This virtual spectrum stacking technique combines the transmissions of contiguous and non-contiguous RF channels with differing physical layers into IP-VRCs. This technique enables simultaneous parallel high-speed wireless transmission; virtual radio channel hopping for enhanced security; and customized security schemes for different IP-VRC Groups. The deployment of the combination of IP-VRC Groups; Universal “Small Cell” Base Stations; and Universal Wireless End-Point Devices allows the aggregation of all available spectrum bands for use within a building environment.
Abstract: A system and method for providing multi-services within a communication network according to various exemplary embodiments can include storing, in a database of a computer, user-defined sets of rules and instructions for providing multi-services to end user devices connected to a communication network comprising a Hybrid Fiber-Wireless (HFW) network having policy management capabilities. The system and method can receive, at one or more processors, the user-defined sets of rules and instructions from a plurality of end users via a plurality of end user devices. The system and method can configure a virtual network for each end user within the communication network using the policy management capabilities based on the user-defined sets of rules and instructions provided by each end user. The user-defined sets of rules and instructions define provisioning and delivery of resources and services provided by the communication network to the end user.
Abstract: A system and method for providing multi-services within a communication network according to various exemplary embodiments can include storing, in a database of a computer, user-defined sets of rules and instructions for providing multi-services to end user devices connected to a communication network comprising a Hybrid Fiber-Wireless (HFW) network having policy management capabilities. The system and method can receive, at one or more processors, the user-defined sets of rules and instructions from a plurality of end users via a plurality of end user devices. The system and method can configure a virtual network for each end user within the communication network using the policy management capabilities based on the user-defined sets of rules and instructions provided by each end user. The user-defined sets of rules and instructions define provisioning and delivery of resources and services provided by the communication network to the end user.
Abstract: A system and method in various embodiments implements a virtual spectrum band stacking technique facilitating spectrum sharing by converting and combining spectrum bands consisting of several different RF channels, common air interfaces, and radio channel protocols in the radio frequency channel domain to form IP Virtual Radio Channels (IP-VRCs) in the packet data domain. This virtual spectrum stacking technique combines the transmissions of contiguous and non-contiguous RF channels with differing physical layers into IP-VRCs. This technique enables simultaneous parallel high-speed wireless transmission; virtual radio channel hopping for enhanced security; and customized security schemes for different IP-VRC Groups. The deployment of the combination of IP-VRC Groups; Universal “Small Cell” Base Stations; and Universal Wireless End-Point Devices allows the aggregation of all available spectrum bands for use within a building environment.
Abstract: A system and method in various embodiments implements a virtual spectrum band stacking technique facilitating spectrum sharing by converting and combining spectrum bands consisting of several different RF channels, common air interfaces, and radio channel protocols in the radio frequency channel domain to form IP Virtual Radio Channels (IP-VRCs) in the packet data domain. This virtual spectrum stacking technique combines the transmissions of contiguous and non-contiguous RF channels with differing physical layers into IP-VRCs. This technique enables simultaneous parallel high-speed wireless transmission; virtual radio channel hopping for enhanced security; and customized security schemes for different IP-VRC Groups. The deployment of the combination of IP-VRC Groups; Universal “Small Cell” Base Stations; and Universal Wireless End-Point Devices allows the aggregation of all available spectrum bands for use within a building environment.
Abstract: A system and method in various embodiments implements a virtual spectrum band stacking technique facilitating spectrum sharing by converting and combining spectrum bands consisting of several different RF channels, common air interfaces, and radio channel protocols in the radio frequency channel domain to form IP Virtual Radio Channels (IP-VRCs) in the packet data domain. This virtual spectrum stacking technique combines the transmissions of contiguous and non-contiguous RF channels with differing physical layers into IP-VRCs. This technique enables simultaneous parallel high-speed wireless transmission; virtual radio channel hopping for enhanced security; and customized security schemes for different IP-VRC Groups. The deployment of the combination of IP-VRC Groups; Universal “Small Cell” Base Stations; and Universal Wireless End-Point Devices allows the aggregation of all available spectrum bands for use within a building environment.
Abstract: A system and method for providing multi-services within a communication network according to various exemplary embodiments can include storing, in a database of a computer, user-defined sets of rules and instructions for providing multi-services to end user devices connected to a communication network comprising a Hybrid Fiber-Wireless (HFW) network having policy management capabilities. The system and method can receive, at one or more processors, the user-defined sets of rules and instructions from a plurality of end users via a plurality of end user devices. The system and method can configure a virtual network for each end user within the communication network using the policy management capabilities based on the user-defined sets of rules and instructions provided by each end user. The user-defined sets of rules and instructions define provisioning and delivery of resources and services provided by the communication network to the end user.
Abstract: A system and method in various embodiments implements a virtual spectrum band stacking technique facilitating spectrum sharing by converting and combining spectrum bands consisting of several different RF channels, common air interfaces, and radio channel protocols in the radio frequency channel domain to form IP Virtual Radio Channels (IP-VRCs) in the packet data domain. This virtual spectrum stacking technique combines the transmissions of contiguous and non-contiguous RF channels with differing physical layers into IP-VRCs. This technique enables simultaneous parallel high-speed wireless transmission; virtual radio channel hopping for enhanced security; and customized security schemes for different IP-VRC Groups. The deployment of the combination of IP-VRC Groups; Universal “Small Cell” Base Stations; and Universal Wireless End-Point Devices allows the aggregation of all available spectrum bands for use within a building environment.
Abstract: A system and method in various embodiments implements a virtual spectrum band stacking technique facilitating spectrum sharing by converting and combining spectrum bands consisting of several different RF channels, common air interfaces, and radio channel protocols in the radio frequency channel domain to form IP Virtual Radio Channels (IP-VRCs) in the packet data domain. This virtual spectrum stacking technique combines the transmissions of contiguous and non-contiguous RF channels with differing physical layers into IP-VRCs. This technique enables simultaneous parallel high-speed wireless transmission; virtual radio channel hopping for enhanced security; and customized security schemes for different IP-VRC Groups. The deployment of the combination of IP-VRC Groups; Universal “Small Cell” Base Stations; and Universal Wireless End-Point Devices allows the aggregation of all available spectrum bands for use within a building environment.
Abstract: A system and method for providing multi-services within a communication network according to various exemplary embodiments can include storing, in a database of a computer, user-defined sets of rules and instructions for providing multi-services to end user devices connected to a communication network comprising a Hybrid Fiber-Wireless (HFW) network having policy management capabilities. The system and method can receive, at one or more processors, the user-defined sets of rules and instructions from a plurality of end users via a plurality of end user devices. The system and method can configure a virtual network for each end user within the communication network using the policy management capabilities based on the user-defined sets of rules and instructions provided by each end user. The user-defined sets of rules and instructions define provisioning and delivery of resources and services provided by the communication network to the end user.
Abstract: A wireless device uses position-indicating data to determine its location in relation to multi-layered wireless networks that the device may see concurrently. If location information is available, the device employs a user-defined priority table to select the order of user-contracted available networks. If location information is unavailable, the device employs a technology learning table to automatically adapt CAI protocol options (e.g., GSM, cdma2000, IS-136, IEEE 802.11x, etc.) to search for an available network. Information is gathered and stored in databases within the device to allow automatic adaptation to multiple wireless networks. The device provides unique access to each wireless network with which a user has contracted, without the intervention of any “anchor” network.