Patents Assigned to Industrial Science & Technology Network, Inc.
  • Patent number: 10981830
    Abstract: The present invention is directed to processes for preparing a silicone surfactant intercalated clay and a polymer-clay nanocomposite. The processes use silicone surfactants having a molecular weight in the range of 10,000 to 100,000 Dalton to achieve fully exfoliating clay structures. Using these macromolecular silicone surfactants, along with the engineered control of the processing pH and drying stress conditions, this invention provides simple and low-cost methods of making a fully-exfoliated polymer-clay nanocomposite.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: April 20, 2021
    Assignee: Industrial Science & Technology Network, Inc.
    Inventors: Arthur Jing-Min Yang, Sun-Mou Lai, Roman C. Domszy, Tsung-Jen Wang
  • Patent number: 9567412
    Abstract: This invention relates to the field of thermal insulation. In particular, the invention describes superinsulation articles having a desired porosity, reduced pore size and cost-effective methods for manufacturing such articles. In one aspect of the present invention, the article may comprise a material system with at least about 20% porosity. In a further aspect of the invention, an article may comprise greater than about 25% of nanopores having a pore size no greater than about 1500 nanometers in its shortest axis.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: February 14, 2017
    Assignee: Industrial Science & Technology Network, Inc.
    Inventor: Arthur J. Yang
  • Patent number: 8785509
    Abstract: This invention relates to the field of thermal insulation. In particular, the invention describes superinsulation articles having a desired porosity, reduced pore size and cost-effective methods for manufacturing such articles. In one aspect of the present invention, the article may comprise a material system with at least about 20% porosity. In a further aspect of the invention, an article may comprise greater than about 25% of nanopores having a pore size no greater than about 1500 nanometers in its shortest axis.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: July 22, 2014
    Assignee: Industrial Science & Technology Network, Inc.
    Inventor: Arthur J. Yang
  • Patent number: 8367209
    Abstract: An engineered nano-composite coating may include hydrophobic an hydrophilic domains, may be applied to transparent and non-transparent substrates using a continuous process, may be UV curable and may impart antifogging characteristics to the substrate.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: February 5, 2013
    Assignee: Industrial Science & Technology Network, Inc.
    Inventors: Ruiyun Zhang, Arthur J. Yang
  • Publication number: 20100215556
    Abstract: A nanopore reactive adsorbent composite material, which may be a porous adsorbent comprising a chemically surface face modified gel, has a composition and micro structure, which integrals ion exchange components such as hydroxy apatite.
    Type: Application
    Filed: October 31, 2007
    Publication date: August 26, 2010
    Applicant: INDUSTRIAL SCIENCE & TECHNOLOGY NETWORK INC.
    Inventors: Roman Domszy, Yun Han Lee
  • Publication number: 20100028694
    Abstract: An engineered nano-composite coating may include hydrophobic an hydrophilic domains, may be applied to transparent and non-transparent substrates using a continuous process, may be UV curable and may impart antifogging characteristics to the substrate.
    Type: Application
    Filed: February 8, 2007
    Publication date: February 4, 2010
    Applicant: Industrial Science & Technology Network Inc. Cyber Center
    Inventors: Ruiyun Zhang, Arthur J. Yang
  • Publication number: 20070122333
    Abstract: Amorphous, nanoporous silica gel having an open channel structure may be surface modified at higher loading of surface modifying ligands, e.g., 7.5 mmole per gram, than known nanoporous silica gels. In one embodiment, an amorphous silica gel has a bimodal pore size distribution of pores at about 10 nanometers and at about 10 microns, and a bulk density of about 0.2 to about 0.25 g/ml. Surface modification with functionalized ligand groups, effective for selective adsorption or reaction catalysis, is achieved by gelling silica sol solution to form a wet silica gel, maintaining the gel at a relatively low elevated temperature in a moist state to obtain a wet nanoporous silica gel having a plurality of open channels within the gel structure and silanol groups on the surface and reacting the surface silanol groups with the ligand group to introduce the functionalized group. The surface modifying reaction may be carried out concurrently with the gelling of a silica precursor in an aqueous alcoholic medium.
    Type: Application
    Filed: November 20, 2006
    Publication date: May 31, 2007
    Applicant: Industrial Science & Technology Network, Inc.
    Inventor: Arthur Yang
  • Publication number: 20060207942
    Abstract: A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.
    Type: Application
    Filed: May 16, 2006
    Publication date: September 21, 2006
    Applicant: Industrial Science & Technology Network, Inc.
    Inventors: Arthur Yang, Yuehua Zhang
  • Patent number: 7067062
    Abstract: A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: June 27, 2006
    Assignee: Industrial Science & Technology Network Inc.
    Inventors: Arthur Jing-Min Yang, Yuehua Zhang
  • Publication number: 20050199545
    Abstract: A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.
    Type: Application
    Filed: November 22, 2004
    Publication date: September 15, 2005
    Applicant: Industrial Science & Technology Network, Inc.
    Inventors: Arthur Yang, Yuehua Zhang
  • Patent number: 6838004
    Abstract: A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: January 4, 2005
    Assignee: Industrial Science & Technology Network, Inc.
    Inventors: Arthur Jing-Min Yang, Yuehua Zhang