Abstract: A pneumatic delivery capsule usable in a pneumatic delivery tube has a tubular side wall extending along and centered on a longitudinal axis, respective capsule heads fixed to respective axially opposite ends of the tubular side wall and dimensioned to slide with the tubular side wall inside the pneumatic delivery tube, and two axially spaced roller bearings each having an outer race fixed to the tubular side wall and an inner race. An insert is fixed to and extends longitudinally between the inner races for receiving an object to be transported. This insert is rotatable on the bearings in the tubular side wall about the longitudinal axis of the tubular side wall with a center of gravity of the insert together with the object to be transported being radially outward of the longitudinal axis.
Abstract: A pneumatic-tube container having a container cylinder and having a cover and a base, at least the cover can be moved from a closed position into an open position. The container cylinder contains an insert, which has at least one tubular channel extending parallel to the longitudinal axis of the container cylinder. At least one channel contains at least one clamping element, which projects laterally into the channel. The damping element can be moved out of the channel, wherein the movement out of the channel and into the same is coupled to the movement of the cover from the closed position into the open position and from the open position into the closed position, respectively. When the cover is open, and preferably also when the base is open, the sample tubes therefore fall out due to gravity when the pneumatic-tube container is held with the opening in the downward direction.