Patents Assigned to Ingevity South Carolina, LLC
  • Patent number: 11938461
    Abstract: The present description provides adsorbent compositions and materials, and systems comprising the same that provide low DBL bleed emission performance. The described materials provide unexpected production advantages as compared to currently available materials.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: March 26, 2024
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Cameron I. Thomson, Marta Leon Garcia
  • Patent number: 11846221
    Abstract: An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, an effective butane working capacity (BWC) of less than 3 g/dL, and a g-total BWC of between 2 grams and 6 grams. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr butane loading step.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: December 19, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Laurence H. Hiltzik, Peter D. McCrae, James R. Miller, Roger S. Williams
  • Patent number: 11814557
    Abstract: The present description provides esterified fatty acid and/or tall oil compositions and their use as alternative plasticizers in adhesives formulations. These esters demonstrate similar or improved performance over adhesives industry standard plasticizers. The description also provides methods of manufacturing and using the same, for example, to improve or modify the performance of adhesive materials, such as, hot melt pressure sensitive adhesives and hygienic adhesives.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: November 14, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: John C. Widders, Russ N. Fitzgerald, Olivia J. Jobes, Brett A. Neumann
  • Patent number: 11802176
    Abstract: A bio-based epoxy resin obtained from a reaction mixture comprising a glycidyl ether component and a bio-based component comprising a fatty acid and a rosin acid, wherein the glycidyl ether component comprises at least two epoxide groups.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: October 31, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Yongning Liu, Wumin Yu, Zhigang Chen
  • Patent number: 11773810
    Abstract: The present description provides low DBL bleed emission performance properties that allows the design of evaporative fuel emission control systems that are simpler and more compact than those possible by prior art by inclusion of a vent-side volume comprising a parallel passage adsorbent such as a carbon honeycomb with narrow channel width and low cell pitch.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: October 3, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Stephan Charles Cronin, Marta Leon Garcia, Laurence H. Hiltzik, Eyma Y. Marrero-Alfonso, Erik W. Versen, James R. Miller, Roger S. Williams
  • Patent number: 11760952
    Abstract: The present disclosure provides a soap thickener and methods of making the same. The soap thickener includes a metal soap of a carboxylic acid composition in a base oil, wherein the carboxylic acid composition includes a modified fatty acid composition prepared by performing a pericyclic reaction between an unsaturated small molecule and a fatty acid mixture. The present disclosure further provides lubricating compositions that include the soap thickener of the present disclosure and methods of preparing the same.
    Type: Grant
    Filed: January 8, 2022
    Date of Patent: September 19, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventor: Devin Granger
  • Patent number: 11732680
    Abstract: The present disclosure describes an evaporative emission control canister system that includes: one or more canisters comprising at least one vent-side particulate adsorbent volume comprising a particulate adsorbent having microscopic pores with a diameter of less than about 100 nm; macroscopic pores having a diameter of about 100-100,000 nm; and a ratio of a volume of the macroscopic pores to a volume of the microscopic pores that is greater than about 150%, and having a retentivity of about 1.0 g/dL or less. The system may further include a high butane working capacity adsorbent. The disclosure also describes a method for reducing emissions in an evaporative emission control system.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: August 22, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Timothy M. Byrne, Laurence H. Hiltzik, Marta Leon Garcia, Cameron I. Thomson
  • Patent number: 11591452
    Abstract: Emulsifier particles and methods for making and using same. The emulsifier particles can include an alkali metal salt or an alkaline earth metal salt of a carboxylic acid terminated fatty amine condensate, an alkali metal salt or an alkaline earth metal salt of a modified tall oil, or a blend of an alkali metal salt or an alkaline earth metal salt of a carboxylic acid terminated fatty amine condensate and an alkali metal salt or an alkaline earth metal salt of a modified tall oil. The emulsifier particles can have a BET specific surface area of about 0.3 m2/g to about 1 m2/g. The method for making the emulsifier particles can include reducing a size of an emulsifier solid via a mechanical attrition process to produce the emulsifier particles.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: February 28, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventor: Richard Arthur Rediger
  • Patent number: 11591990
    Abstract: The present description provides low DBL bleed emission performance properties that allows the design of evaporative fuel emission control systems that are simpler and more compact than those possible by prior art by inclusion of a vent-side volume comprising a parallel passage adsorbent such as a carbon honeycomb with narrow channel width and low cell pitch.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: February 28, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Stephan Charles Cronin, Marta Leon Garcia, Laurence H. Hiltzik, Eyma Y. Marrero-Alfonso, Erik W. Versen, James R. Miller, Roger S. Williams
  • Patent number: 11571680
    Abstract: The present disclosure provides for a porous gas sorbent monolith with superior gravimetric working capacity and volumetric capacity, a gas storage system including a porous gas sorbent monolith of the present disclosure, methods of making the same, and method for storing a gas. The porous gas sorbent monolith includes a gas adsorbing material and a non-aqueous binder.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: February 7, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Billy-Paul M. Holbrook, Laurence H. Hiltzik, Robert W. Mims, Rey P. Bongalonta, Kenechukwu Onubogu
  • Patent number: 11565239
    Abstract: The present description provides high working capacity adsorbents with low DBL bleed emission performance properties that allows the design of evaporative fuel emission control systems that are lower cost, simpler and more compact than those possible by prior art. Emission control canister systems comprising the adsorbent material demonstrate a relatively high gasoline working capacity, and low emissions.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: January 31, 2023
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Laurence H. Hiltzik, James R. Miller, Roger S. Williams, Cameron I. Thomson, Michael G. Heim, Emma M. Card, Stephan Charles Cronin
  • Patent number: 11536178
    Abstract: An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr BETP butane loading step.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: December 27, 2022
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Laurence H. Hiltzik, Peter D. Mccrae, James R. Miller, Roger S. Williams
  • Patent number: 11506097
    Abstract: An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, an effective butane working capacity (BWC) of less than 3 g/dL, and a g-total BWC of between 2 grams and 6 grams. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr butane loading step.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: November 22, 2022
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Laurence H. Hiltzik, Peter D. McCrae, James R. Miller, Roger S. Williams
  • Patent number: 11448109
    Abstract: An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, an effective butane working capacity (BWC) of less than 3 g/dL, and a g-total BWC of between 2 grams and 6 grams. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr butane loading step.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: September 20, 2022
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Laurence H. Hiltzik, Peter D. McCrae, James R. Miller, Roger S. Williams
  • Patent number: 11286823
    Abstract: An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, an effective butane working capacity (BWC) of less than 3 g/dL, and a g-total BWC of between 2 grams and 6 grams. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr butane loading step.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: March 29, 2022
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Laurence H. Hiltzik, Peter D. McCrae, James R. Miller, Roger S. Williams
  • Patent number: 11268007
    Abstract: A composition containing a blend, reaction product, or mixture thereof, of (A) one or more hydrophobizing component or agent (e.g., an amine or amide containing compound), and (B) one or more phenolic material or composition comprising phenolic polymers or salts thereof (e.g., lignin, a lignin derivative, or mixture thereof), which may be utilized as a drilling fluid additive or as a component of a drilling fluid additive, is described. A method of making the composition or drilling fluid additive is also described. Further, a drilling fluid containing the drilling fluid additive or composition is described.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: March 8, 2022
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventor: Shadaab S. Maghrabi
  • Patent number: 11253836
    Abstract: The present disclosure provides for a porous gas sorbent monolith with superior gravimetric working capacity and volumetric capacity, a gas storage system including a porous gas sorbent monolith of the present disclosure, methods of making the same, and method for storing a gas. The porous gas sorbent monolith includes a gas adsorbing material and a non-aqueous binder.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: February 22, 2022
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Billy-Paul M. Holbrook, Laurence H. Hiltzik, Robert W. Mims, Rey P. Bongalonta, Kenechukwu Onubogu
  • Patent number: 11154838
    Abstract: The present description provides high working capacity adsorbents with low DBL bleed emission performance properties that allows the design of evaporative fuel emission control systems that are lower cost, simpler and more compact than those possible by prior art. Emission control canister systems comprising the adsorbent material demonstrate a relatively high gasoline working capacity, and low emissions.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: October 26, 2021
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Laurence H. Hiltzik, James R. Miller, Roger S. Williams, Cameron I. Thomson, Michael G. Heim, Emma M. Card, Stephan Charles Cronin
  • Patent number: 11142676
    Abstract: Methods for making emulsifiers, emulsified drilling fluids, and methods for using the same are provided. In one or more embodiments, the method for making an emulsifier can include mixing a tall oil and a triamide. The triamide can have the chemical formula: where: x, y, and z are integers independently selected from 1 to 10, R1 is a C8-C20 alkyl, a C8-C20 alkenyl, a C8-C20 dialkenyl, or a C5-C20 alkynyl, R2 is H or ?independently selected for each [(CH2)xNR2(CH2)y)] unit, where R4 is a C1-C3 alkylene or a C1-C3 alkylene alcohol, and where at least one R2 is ?and R3 is a C8-C20 alkyl, a C8-C20 alkenyl, a C8-C20 dialkenyl, or a C8-C20 alkynyl.
    Type: Grant
    Filed: August 11, 2019
    Date of Patent: October 12, 2021
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Phillip W. Hurd, John B. Hines, Roger Scott Johnson, David T. Mpofu, Nathan P. Rife, Anne M. Cothran
  • Patent number: 11142677
    Abstract: A low gravity solid tolerant emulsifier and methods of making the same. The emulsifier includes a maleated amido-amine reaction product produced by: (1) reacting a fatty acid material comprising, and an amine material (e.g., a amine having a amine value of about 700 to about 1300 mg/g, such as AMINE HST) to produce an amido-amine reaction product; and (2) reacting the amido-amine reaction product with maleic anhydride to produce the maleated amido-amine reaction product. An invert emulsion fluids and drilling fluids that include the emulsifier of described herein and methods of using the same.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: October 12, 2021
    Assignee: INGEVITY SOUTH CAROLINA, LLC
    Inventors: Shadaab S. Maghrabi, Joseph J. Fandel