Patents Assigned to Inkron Oy
  • Patent number: 11084928
    Abstract: An adhesive or encapsulant composition, having a siloxane polymer having a molecular weight of from 300 to 150,000 g/mol and having a viscosity of from 1000 to 100,000 mPa-sec at 5 rpm viscometer and at 25° C., and a curing agent that aids in curing the siloxane polymer upon the application of ultraviolet light. The composition is transmissive to visible light with an optical transmissivity of 95% or more in the visible spectrum at a thickness of 1 mm or less, and wherein the siloxane polymer is a material formed without hydrosilylation and has less than 5 mol % of Si—OH groups compared to all groups bound to Si therein, and substantially no Si—H bonds.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: August 10, 2021
    Assignee: Inkron Oy
    Inventors: Juha Rantala, Jarkko Heikkinen, Janne Kylmä
  • Patent number: 11001674
    Abstract: A siloxane polymer is made by providing a first compound having the chemical formula SiR1aR24?a where a is from 1 to 3, R1 is a reactive group, and R2 is an alkyl group or an aryl group, and providing a second compound having the chemical formula SiR3bR4cR54?(b+c) where R3 is a cross-linking functional group, R4 is a reactive group, and R5 is an alkyl or aryl group, and where b=1 to 2, and c=1 to (4?b). The first and second compounds are polymerized together to form a siloxane polymer and a plurality of particles mixed with the siloxane polymer.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 11, 2021
    Assignee: Inkron Oy
    Inventors: Jarkko Heikkinen, Juha Rantala
  • Patent number: 10889690
    Abstract: Phenoxyphenylsilane monomers were synthesized and polymerized. The polymers have high refractive indices and excellent UV and thermal stability. Their water and oxygen permeability is lower than commercial phenyl silicone elastomers. They show good compatibility with metal oxide nanoparticles. The polymers of the invention are suitable as LED encapsulant, as light guide material in CMOS image sensors, in OLED devices, lasers and in other optical applications.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: January 12, 2021
    Assignee: Inkron Oy
    Inventors: Jyri Paulasaari, Juha Rantala
  • Patent number: 10658554
    Abstract: An LED lamp is formed from a die substrate wherein the substrate has formed thereon a semiconductor material, an electrode for the application of a bias across the semiconductor material for causing light to be emitted therefrom, and an adhesive that bonds the die substrate to a support substrate, wherein the adhesive is a polymerized siloxane polymer having a thermal conductivity of greater than 0.1 watts per meter kelvin (W/(m·K)) wherein the adhesive is not light absorbing, wherein the siloxane polymer has silicon and oxygen in the polymer backbone, as well as aryl or alky groups bound thereto, and wherein the adhesive further comprises particles having an average particle size of less than 100 microns.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: May 19, 2020
    Assignee: Inkron Oy
    Inventors: Juha Rantala, Jarkko Heikkinen, Janne Kylmä
  • Patent number: 10502995
    Abstract: A method for making a dielectric film includes a substrate on which is deposited a siloxane starting material and particles, wherein the siloxane starting material has a siloxane polymer, a siloxane oligomer and/or silane monomers, and wherein the particles have an average particle size of less than 400 nm. After deposition, heat and/or electromagnetic energy is applied to the siloxane particle layer so as to cure the layer and form a dielectric film on the substrate. The formed film is optically transmissive to visible light and transmits at least 80% of the visible light incident thereon, and is electrically insulating and has a sheet resistance of 1000 ?/sq or more.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: December 10, 2019
    Assignee: Inkron Oy
    Inventors: Juha Rantala, Jarkko Heikkinen, Janne Kylmä
  • Patent number: 10487179
    Abstract: A siloxane polymer is made by providing a first compound having the chemical formula SiR1aR24?a where a is from 1 to 3, R1 is a reactive group, and R2 is an alkyl group or an aryl group, and providing a second compound having the chemical formula SiR3bR4cR54?(b+c) where R3 is a cross-linking functional group, R4 is a reactive group, and R5 is an alkyl or aryl group, and where b=1 to 2, and c=1 to (4?b). The first and second compounds are polymerized together to form a siloxane polymer. The siloxane polymer can be then used in a final composition where the siloxane polymer comprises from 5 to 100% by weight, and filler (e.g. microparticles, nanoparticles, nanowires, etc.) comprises from zero to 95% by weight. The siloxane polymer composition is useful in a variety of areas such as an adhesive, e.g. as a die attach adhesive in semiconductor (e.g. LED) packaging applications, encapsulants, optical coatings, protective coatings, and other applications.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: November 26, 2019
    Assignee: Inkron Oy
    Inventors: Jarkko Heikkinen, Juha Rantala
  • Patent number: 10435420
    Abstract: Phenoxyphenylsilane monomers were synthesized and polymerized. The polymers have high refractive indices and excellent UV and thermal stability. Their water and oxygen permeability is lower than commercial phenyl silicone elastomers. They show good compatibility with metal oxide nanoparticles. The polymers of the invention are suitable as LED encapsulant, as light guide material in CMOS image sensors, in OLED devices, lasers and in other optical applications.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: October 8, 2019
    Assignee: Inkron Oy
    Inventors: Jyri Paulasaari, Juha Rantala
  • Publication number: 20190225756
    Abstract: Phenoxyphenylsilane monomers were synthesized and polymerized. The polymers have high refractive indices and excellent UV and thermal stability. Their water and oxygen permeability is lower than commercial phenyl silicone elastomers. They show good compatibility with metal oxide nanoparticles. The polymers of the invention are suitable as LED encapsulant, as light guide material in CMOS image sensors, in OLED devices, lasers and in other optical applications.
    Type: Application
    Filed: July 14, 2017
    Publication date: July 25, 2019
    Applicant: Inkron Oy
    Inventors: Jyri Paulasaari, Juha Rantala
  • Patent number: 10290558
    Abstract: An adhesive or encapsulant composition, having a siloxane polymer having a molecular weight of from 300 to 150,000 g/mol and having a viscosity of from 1000 to 100,000 mPa-sec at 5 rpm viscometer and at 25° C., and a curing agent that aids in curing the siloxane polymer upon the application of ultraviolet light. The composition is transmissive to visible light with an optical transmissivity of 95% or more in the visible spectrum at a thickness of 1 mm or less, and wherein the siloxane polymer is a material formed without hydrosilylation and has less than 5 mol % of Si—OH groups compared to all groups bound to Si therein, and substantially no Si—H bonds.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: May 14, 2019
    Assignee: Inkron Oy
    Inventors: Juha Rantala, Jarkko Heikkinen, Janne Kylmä
  • Publication number: 20180212113
    Abstract: An LED lamp is formed from a die substrate wherein the substrate has formed thereon a semiconductor material, an electrode for the application of a bias across the semiconductor material for causing light to be emitted therefrom, and an adhesive that bonds the die substrate to a support substrate, wherein the adhesive is a polymerized siloxane polymer having a thermal conductivity of greater than 0.1 watts per meter kelvin (W/(m·K)) wherein the adhesive is not light absorbing, wherein the siloxane polymer has silicon and oxygen in the polymer backbone, as well as aryl or alky groups bound thereto, and wherein the adhesive further comprises particles having an average particle size of less than 100 microns.
    Type: Application
    Filed: June 22, 2015
    Publication date: July 26, 2018
    Applicant: Inkron Oy
    Inventors: Juha Rantala, Jarkko Heikkinen, Janne Kylmä