Patents Assigned to InnoScion, LLC
  • Patent number: 11850006
    Abstract: Devices and methods for ultrasound image-guided percutaneous, cardiac valve implantation and repair comprise, in combination, a plurality of devices including but not limited to an ultrasound-image guided catheter, a pericardial sheath, a cardiac-valve delivery system and an ascending aortic filter. An image-guided catheter is utilized to introduce via an introducer needle and a guide wire a pericardium portal for permitting entry from the chest wall to inside the pericardial space between the pericardial outer lining and inner lining. The pericardium portal permits the use of ultrasound vision to locate a site proximate the left ventricular apex, for introduction of a sheath via a .myocardium needle into the left ventricular space at an angle and avoiding any coronaries or vessels. A first delivery system permits placement of at least one aortic filter which collects any emboli, particulate matter, plaque and prevents such matter travelling via the ascending aorta to the brain, causing a stroke.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 26, 2023
    Assignee: INNOSCION LLC
    Inventor: Theodore P. Abraham
  • Patent number: 11027141
    Abstract: A pericardial implantable cardioverter defibrillator (ICD) may be delivered to the heart through the chest wall using an ultrasound image guided catheter. The ICD may comprise a patch and wire leads which may be secured by a clam shell-like pad at a distal end and comprise a pig-tail shaped securing tail at the other end so that the ICD is firmly attached to the pericardium of a human heart. The ICD may be attached where most needed and serve as either a pacemaker or a defibrillator. In one embodiment, the ICD may emit radio frequency warning signals of heart failure sensed when pacemaker or defibrillator usage is rendered necessary.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: June 8, 2021
    Assignee: INNOSCION LLC
    Inventor: Theodore P. Abraham
  • Patent number: 8235903
    Abstract: An implantable, remotely controlled medical device that incorporates an imaging/therapy ultrasound system may be minimally invasive and equipped with an anchoring portion for securing the device within a human body. Transducers for imaging/therapy may be manipulated remotely using motors and/or selectively actuated to obtain different fields of view and stereoscopic imaging. The implantable medical device can be in the shape of a disc, double disc, sphere or pellet, for example, and may be implanted during open surgery using a manipulatable tool or using a minimally invasive image-guided sheath or catheter. The imaging system comprises one or more ultrasound transducers and can be used to provide therapy to or obtain ultrasound images of a target and surrounding volumes or focal points. The device may be controlled and report data by wired or wireless means and, if wireless, permanently worn inside the body as the patient follows their normal daily routine.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: August 7, 2012
    Assignee: InnoScion, LLC
    Inventor: Theodore P. Abraham
  • Patent number: 8147413
    Abstract: An interventional medical device that incorporates an imaging system may be minimally invasive and equipped with an anchoring portion that may be slidable and fixed in a predetermined position of its elongate body outside the human body, the device further comprising deployable first and second balloons for also securing the device to an internal wall, for example, within a human body. The medical device can be in the form of a catheter, a sheath or comprise interventional devices, particularly those suitable for minimally invasive procedures in the pericardium. The dual sealing/locking balloons may comprise a slidably moveable assembly for moving from a first position over an inflation channel to a second position over one inflation/deflation channel for separately inflating a distal balloon and then a proximal balloon to the patient's skin surface.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 3, 2012
    Assignee: InnoScion, LLC
    Inventor: Theodore P. Abraham
  • Patent number: 8147414
    Abstract: A remotely manipulatable ultrasound transducer element or transducer array permits an operator of an ultrasound system to be remotely located from a patient and yet remotely control the location of the element or array on a patient's body such as on the skin surface or within a body cavity. The transducer element or transducer array associated with motors and control circuits comprises an assembly within a housing for fixation to or within a human body. The transducer assembly may be fixed to a ring surrounding an image guided catheter and may rotate about the image guided catheter or move along its length to an anchoring position proximate the surface skin. Two embodiment systems for pericardial access may comprise surface and internal vision or ultrasound guidance systems that are wireless or wired one operating on suction and another on mechanical grasping of the pericardial lining.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: April 3, 2012
    Assignee: InnoScion, LLC
    Inventor: Theodore P. Abraham
  • Patent number: 8038622
    Abstract: A remotely manipulatable transducer element or linear transducer array for use with a remote work station including a display permits an operator of an ultrasound system to be remotely located from a patient. The transducer or linear transducer array comprises an assembly within a housing for fixation to a human body and intended to be placed one time and then remotely manipulated in directions of rotation, twist, and linearly in first and second perpendicular directions within a plane parallel to the surface of the human body under study. In one embodiment, the housing comprises a motor and a linear transducer array which are mounted to a rotor of the motor via an optional gear assembly for rotation, for example, in a range of 180 degrees so that multiple planes of imaging can be obtained, for example, of a heart or other body organ.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: October 18, 2011
    Assignee: InnoScion, LLC
    Inventor: Theodore P. Abraham
  • Publication number: 20100174189
    Abstract: An implantable, remotely controlled medical device that incorporates an imaging/therapy ultrasound system may be minimally invasive and equipped with an anchoring portion for securing the device within a human body. Transducers for imaging/therapy may be manipulated remotely using motors and/or selectively actuated to obtain different fields of view and stereoscopic imaging. The implantable medical device can be in the shape of a disc, double disc, sphere or pellet, for example, and may be implanted during open surgery using a manipulatable tool or using a minimally invasive image-guided sheath or catheter. The imaging system comprises one or more ultrasound transducers and can be used to provide therapy to or obtain ultrasound images of a target and surrounding volumes or focal points. The device may be controlled and report data by wired or wireless means and, if wireless, permanently worn inside the body as the patient follows their normal daily routine.
    Type: Application
    Filed: February 4, 2010
    Publication date: July 8, 2010
    Applicant: INNOSCION, LLC
    Inventor: Theodore P. Abraham
  • Publication number: 20090105597
    Abstract: A remotely manipulatable ultrasound transducer element or transducer array permits an operator of an ultrasound system to be remotely located from a patient and yet remotely control the location of the element or array on a patient's body such as on the skin surface or within a body cavity. The transducer element or transducer array associated with motors and control circuits comprises an assembly within a housing for fixation to or within a human body. The transducer assembly may be fixed to a ring surrounding an image guided catheter and may rotate about the image guided catheter or move along its length to an anchoring position proximate the surface skin. Two embodiment systems for pericardial access may comprise surface and internal vision or ultrasound guidance systems that are wireless or wired one operating on suction and another on mechanical grasping of the pericardial lining.
    Type: Application
    Filed: October 14, 2008
    Publication date: April 23, 2009
    Applicant: InnoScion, LLC
    Inventor: Theodore P. Abraham
  • Publication number: 20090036780
    Abstract: A remotely manipulatable transducer element or linear transducer array for use with a remote work station including a display permits an operator of an ultrasound system to be remotely located from a patient. The transducer or linear transducer array comprises an assembly within a housing for fixation to a human body and intended to be placed one time and then remotely manipulated in directions of rotation, twist, and linearly in first and second perpendicular directions within a plane parallel to the surface of the human body under study. In one embodiment, the housing comprises a motor and a linear transducer array which are mounted to a rotor of the motor via an optional gear assembly for rotation, for example, in a range of 180 degrees so that multiple planes of imaging can be obtained, for example, of a heart or other body organ.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 5, 2009
    Applicant: InnoScion, LLC
    Inventor: Theodore P. Abraham
  • Publication number: 20080183080
    Abstract: An interventional medical device that incorporates an imaging system may be minimally invasive and equipped with an anchoring portion that may be slidable and fixed in a predetermined position of its elongate body outside the human body, the device further comprising deployable first and second balloons for also securing the device to an internal wall, for example, within a human body. The medical device can be in the form of a catheter, a sheath or comprise interventional devices, particularly those suitable for minimally invasive procedures in the pericardium. The dual sealing/locking balloons may comprise a slidably moveable assembly for moving from a first position over an inflation channel to a second position over an inflation channel for separately inflating a distal balloon and then a proximal balloon to the patient's skin surface. Alternatively, the balloon assembly may be fixed over first and second inflation/deflation channels from the proximal end.
    Type: Application
    Filed: October 12, 2007
    Publication date: July 31, 2008
    Applicant: INNOSCION, LLC
    Inventor: Theodore P. Abraham
  • Publication number: 20080091109
    Abstract: An interventional medical device that incorporates an imaging system may be minimally invasive and equipped with an anchoring portion at a proximal end for securing the device to a human body. A luer lock may be utilized at the proximal end, for example, for introducing a syringe. The medical device can be in the form of sheaths, catheters, and interventional devices, particularly those suitable for minimally invasive procedures in the pericardium. The imaging system comprises one or more ultrasound transducers and can be used to guide the device to a target area and to perform a procedure and/or provide access to a target area for performing a procedure via a plurality of lumen.
    Type: Application
    Filed: July 25, 2007
    Publication date: April 17, 2008
    Applicant: INNOSCION, LLC
    Inventor: Theodore P. Abraham
  • Publication number: 20080091104
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound imaging system integrated into a single device. The medical device can be in the form of sheaths, catheters, and interventional devices, particularly those suitable for minimally invasive procedures in the human or other mammalian body. The imaging system comprises one or more small ultrasound transducers that can be permanently integrated into the device or integrated into an interchangeable ultrasound transducer that can be inserted into and removed from the device to customize the device for a particular use. An ultrasound system can be provided in the device either alone or in combination with fiber optic imaging to provide a range of imaging and therapeutic capabilities of the device.
    Type: Application
    Filed: October 12, 2007
    Publication date: April 17, 2008
    Applicant: INNOSCION, LLC
    Inventor: Theodore P. Abraham