Abstract: A longitudinal extending body with oriented fibers comprised of an organic compound, preferably cellulose fibers, with a hydrophilic and hydrophobic polymer having absorbable and non res sorbable qualities in the body, with an internal construction to promote cell growth. The longitudinal body has at least one wall having oriented fiber to include cellulose fiber extending the length of said body. This extending body has a surface that is smooth to the touch for additional processing methods such as machining, compression molding and 3 D printing.
Abstract: A inventive method to process an organic compound with a thermoplastic alloy composition comprising of a high heat hydrophilic polymer, a polyolefin, preferably with a compatibilizer that is without maleic content. A compressed pellet will be generated at low temperatures for producing a cellulose thermoplastic alloy composition improving the ability to color and replace existing compositions that are challenged by toxicity and performance. This composition can be re fractured into fine particles if necessary, to produce 3 D printed parts well beyond the degradation of the specified organic compound for cosmetic, automotive or medical markets.
Abstract: A cellulosic inclusion-thermoplastic composition that includes cellulosic inclusions and a thermoplastic polyolefin that forms a matrix in which the cellulosic inclusions are dispersed. A maleated polymer and a polar thermoplastic polymer resin of a polyamide or polyester are provided to improve adhesion between the cellulosic inclusions and the thermoplastic polyolefin. The polar thermoplastic polymer resin is characterized by a melting temperature greater than that of the thermoplastic polyolefin. The composition as provided has increased break tensile strength relative to a composition devoid of the polar thermoplastic polymer resin but otherwise is unchanged. The break tensile is measured at 23° Celsius and at an elongation rate of 50 millimeters per minute.
Type:
Application
Filed:
September 26, 2013
Publication date:
January 23, 2014
Applicants:
RheTech, Inc., Innovative Plastic and molding
Inventors:
Robert C. Joyce, Andrew Hopkins, Harutun George Karian
Abstract: A cellulosic inclusion-thermoplastic composition that includes cellulosic inclusions and a thermoplastic polyolefin that forms a matrix in which the cellulosic inclusions are dispersed. A maleated polymer and a polar thermoplastic polymer resin of a polyamide or polyester are provided to improve adhesion between the cellulosic inclusions and the thermoplastic polyolefin. The polar thermoplastic polymer resin is characterized by a melting temperature greater than that of the thermoplastic polyolefin. The composition as provided has increased break tensile strength relative to a composition devoid of the polar thermoplastic polymer resin but otherwise is unchanged. The break tensile is measured at 23° Celsius and at an elongation rate of 50 millimeters per minute.
Type:
Grant
Filed:
June 13, 2011
Date of Patent:
October 1, 2013
Assignees:
Innovative Plastics and Molding, RheTech, Inc.
Inventors:
Robert C. Joyce, Andrew Hopkins, Harutun George Karian
Abstract: A crystalline polyamide 6 in a compounding extrusion process to make wood flour-polyolefin composite. The wood plastic composite pellet and can be post-blended with reinforced polyolefin pellets in an injection molding step to produce hybrid fibrous composites. The resulting compatibilization in the hybrid fibrous composites gives molded parts having enhanced mechanical properties at greatly reduced temperatures. There is wide variety of molded parts that can be made by varying the blend ratio of the wood plastic compounded product with or without and glass fiber reinforced pellets in the injection molding step.
Type:
Grant
Filed:
January 15, 2009
Date of Patent:
August 9, 2011
Assignee:
Innovative Plastics and Molding RNE Tech