Patents Assigned to Innoviz Technologies Ltd.
  • Publication number: 20240045040
    Abstract: A LIDAR system for detecting an obstruction on a window that is associated with the LIDAR system, the LIDAR system includes at least one processor configured to detect, based on detection signals generated by an obstruction sensor of the LIDAR system, an obstruction that at least partially obstructs a passage of light through the window. The obstruction sensor differs from an object related sensor of the LIDAR system that is configured to detect of one or more objects within a field of view (FOV) of the LIDAR system.
    Type: Application
    Filed: August 2, 2023
    Publication date: February 8, 2024
    Applicant: Innoviz Technologies Ltd.
    Inventors: Omri Tennenhaus, Idan Bakish, Oren Navon, Ido Amrani, Ronen Eshel, Yuval Yifat, Natali Revivo
  • Patent number: 11885885
    Abstract: A LIDAR system, comprising: (a) a plurality of anchored LIDAR sensing units, each anchored LIDAR sensing unit comprising at least: (i) a housing; (ii) at least one detector, mounted in the housing, configured to detect light signals arriving from objects in a field of view of the anchored LIDAR sensing unit; and (iii) a communication unit, configured to output detection information which is based on outputs of the at least one detector and which is indicative of existence of the objects; and (b) at least one integratory processing unit, configured to receive the detection information from two or more of the plurality of anchored LIDAR sensing units, and to process the received detection information to provide a three dimensional model of a scene which is larger than any of the field of views of the independent anchored LIDAR sensing units.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: January 30, 2024
    Assignee: Innoviz Technologies Ltd.
    Inventors: Amit Steinberg, Alon Gan
  • Publication number: 20230375673
    Abstract: A distance measurement (DM) optical sensor that includes (i) a 2D sensing array that includes sensing elements that include DM sensing elements and feedback sensing elements that are statically allocated to act as feedback sensing elements, (ii) output paths that include DM output paths and feedback output paths; and (iii) one or more processing circuits that are configured to: (a) trigger an outputting of DM output signals, trigger an outputting of feedback output signals, and (b) process the feedback output signals to determine a spatial relationship between an actual location of light sensed by at least some of the sensing elements and an expected location of the light.
    Type: Application
    Filed: May 11, 2023
    Publication date: November 23, 2023
    Applicant: Innoviz Technologies Ltd.
    Inventors: Idan Bakish, Shahar Levy, David Cohen
  • Publication number: 20230350026
    Abstract: A LIDAR system is disclosed. The system may include a laser light projection system that may simultaneously provide at least two laser light beams. The system may also include an optical system, including one or more deflectors to project the at least two laser light beams toward a field of view of the LIDAR system. Each of the laser light beams may have an energy density below an eye safe level. However, a total combined energy density of the laser light beams may exceed an eye safe level. The laser light beams may be projected from the deflector are spaced apart from one another by an angular spacing ranging from 2.5 mrad to 6 mrad.
    Type: Application
    Filed: June 23, 2023
    Publication date: November 2, 2023
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Nir GOREN, Ronen ESHEL
  • Patent number: 11782137
    Abstract: A LIDAR system or a vehicle may include at least one processor configured to perform a method to detect objects in a field of view. The method may include controlling at least one LIDAR light source in a manner enabling light flux of the at least one LIDAR light source to vary over a plurality of scans of a field of view; receiving, from a group of detectors, a plurality of input signals indicative of reflections of light projected from the field of view; detecting a possible existence of an object in the background area based on first input signals associated with a first scanning cycle; detecting a possible existence of the object based on second input signals associated with a second scanning cycle; and aggregating the first and second input signals to detect an existence of the object at an object-existence-certainty level higher than a threshold.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: October 10, 2023
    Assignee: Innoviz Technologies Ltd.
    Inventors: Amit Steinberg, Guy Zohar
  • Publication number: 20230288541
    Abstract: A LIDAR system may include a light source, a sensor, and a processor. The processor may be configured to receive from the sensor, a first output signal associated with a first laser light pulse maximally incident upon an object; receive from the sensor, a second output signal associated with a second laser light pulse partially incident upon the object; use the first output signal and the second output signal to determine a value indicative of a portion of the second laser light pulse that was incident upon the object; use the determined value to determine a location associated with an edge of the object; and generate a point cloud data point representative of the determined location associated with the edge of the object.
    Type: Application
    Filed: February 8, 2023
    Publication date: September 14, 2023
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventor: Avishay Moscovici
  • Patent number: 11726181
    Abstract: A LIDAR system is disclosed. The system has a laser light projection system to simultaneously project at least two laser light beams. The system also has a deflector to project the at least two laser light beams toward a field of view of the LIDAR system. Each of the at least two laser light beams has an energy density below an eye safe level. A total combined energy density of the at least two laser light beams is above an eye safe level. Further, the at least two laser light beams projected from the deflector are separated from one another by an angular spacing ranging from 2.5 mrad to 6 mrad.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: August 15, 2023
    Assignee: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Nir Goren, Ronen Eshel
  • Publication number: 20230251383
    Abstract: A LIDAR system including a MEMS scanning device is disclosed. The LIDAR system includes a light source, a light deflector, a sensor, and a processor. The light deflector deflects light from the light source or light received from an environment outside a vehicle in which the LIDAR system is installed. The sensor detects the light received from the light source or the environment. The processor determines a distance of one or more objects in the environment from the vehicle based on the signals from the sensor. The light deflector includes one or more actuators, which include one or more actuating arms. Connectors connect the actuating arms to an MEMS mirror or other deflector. The actuating arms move when subjected to an electrical field in the form of a voltage or current. Movement of the actuating arms causes movement of the MEMS mirror or deflector causing it to deflect light.
    Type: Application
    Filed: April 19, 2023
    Publication date: August 10, 2023
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Matityahu SHANI, David ELOOZ, Idan BAKISH, Michael GIRGEL, Moshe MEDINA, Sason SOURANI, Yair ALPERN, Smadar David RALY
  • Publication number: 20230243919
    Abstract: A vehicle-assistance system for classifying objects in a vehicle's surroundings. The system includes: at least one memory configured to store classification information for classifying a plurality of objects; and at least one processor configured to receive a plurality of detection results associated with light detection and ranging system (LIDAR) detection results, each detection result including location information, and further information indicative of at least two of the following detection characteristics: object surface reflectivity; temporal spreading of signal reflected from the object; object surface physical composition; ambient illumination measured at a LIDAR dead time; difference in detection information from a previous frame; and confidence level associated with another detection characteristic.
    Type: Application
    Filed: March 28, 2023
    Publication date: August 3, 2023
    Applicant: Innoviz Technologies Ltd.
    Inventors: Amir DAY, Guy ZOHAR, Julian VLAIKO, Nir OSIROFF, Ovadya MENADEVA
  • Publication number: 20230168382
    Abstract: A LIDAR system, comprising: (a) a plurality of anchored LIDAR sensing units, each anchored LIDAR sensing unit comprising at least: (i) a housing; (ii) at least one detector, mounted in the housing, configured to detect light signals arriving from objects in a field of view of the anchored LIDAR sensing unit; and (iii) a communication unit, configured to output detection information which is based on outputs of the at least one detector and which is indicative of existence of the objects; and (b) at least one integratory processing unit, configured to receive the detection information from two or more of the plurality of anchored LIDAR sensing units, and to process the received detection information to provide a three dimensional model of a scene which is larger than any of the field of views of the independent anchored LIDAR sensing units.
    Type: Application
    Filed: January 30, 2023
    Publication date: June 1, 2023
    Applicant: Innoviz Technologies Ltd.
    Inventors: Amit Steinberg, Alon Gan
  • Patent number: 11662467
    Abstract: A LIDAR system including a MEMS scanning device is disclosed. The LIDAR system includes a light source, a light deflector, a sensor, and a processor. The light deflector deflects light from the light source or light received from an environment outside a vehicle in which the LIDAR system is installed. The sensor detects the light received from the light source or the environment. The processor determines a distance of one or more objects in the environment from the vehicle based on the signals from the sensor. The light deflector includes one or more actuators, which include one or more actuating arms. Connectors connect the actuating arms to an MEMS mirror or other deflector. The actuating arms move when subjected to an electrical field in the form of a voltage or current. Movement of the actuating arms causes movement of the MEMS mirror or deflector causing it to deflect light.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 30, 2023
    Assignee: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Matityahu Shani, David Elooz, Idan Bakish, Michael Girgel, Moshe Medina, Sason Sourani, Yair Alpern, Smadar David Raly
  • Patent number: 11639982
    Abstract: A LIDAR system for use in a vehicle is provided. The LIDAR system may include at least one processor configured to control at least one light source for illuminating a field of view and scan a field of view by controlling movement of at least one deflector at which the at least one light source is directed. The at least one processor may also be configured to receive, from at least one sensor, reflections signals indicative of light reflected from an object in the field of view. The at least one processor may further be configured to detect at least one temporal distortion in the reflections signals, and determine from the at least one temporal distortion an angular orientation of at least a portion of the object.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: May 2, 2023
    Assignee: Innoviz Technologies Ltd.
    Inventors: Amir Day, Guy Zohar, Julian Vlaiko, Nir Osiroff, Ronen Eshel
  • Publication number: 20230121373
    Abstract: In some embodiments, a LIDAR system may include at least one processor configured to control at least one light source for projecting light toward a field of view and receive from at least one first sensor first signals associated with light projected by the at least one light source and reflected from an object in the field of view, wherein the light impinging on the at least one first sensor is in a form of a light spot having an outer boundary. The processor may further be configured to receive from at least one second sensor second signals associated with light noise, wherein the at least one second sensor is located outside the outer boundary; determine, based on the second signals received from the at least one second sensor, an indicator of a magnitude of the light noise; and determine, based on the indicator the first signals received from the at least one first sensor and, a distance to the object.
    Type: Application
    Filed: December 1, 2022
    Publication date: April 20, 2023
    Applicant: Innoviz Technologies Ltd.
    Inventors: Amit Steinberg, Guy Zohar
  • Patent number: 11604262
    Abstract: In some embodiments, a LIDAR system may include at least one processor configured to control at least one light source for projecting light toward a field of view and receive from at least one first sensor first signals associated with light projected by the at least one light source and reflected from an object in the field of view, wherein the light impinging on the at least one first sensor is in a form of a light spot having an outer boundary. The processor may further be configured to receive from at least one second sensor second signals associated with light noise, wherein the at least one second sensor is located outside the outer boundary; determine, based on the second signals received from the at least one second sensor, an indicator of a magnitude of the light noise; and determine, based on the indicator the first signals received from the at least one first sensor and, a distance to the object.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: March 14, 2023
    Assignee: Innoviz Technologies Ltd
    Inventor: Amit Steinberg
  • Patent number: 11604263
    Abstract: A MEMS scanning device may include: a movable MEMS mirror configured to pivot about at least one axis; at least one actuator operable to rotate the MEMS mirror about the at least one axis, each actuator out of the at least one actuator operable to bend upon actuation to move the MEMS mirror; and at least one flexible interconnect element coupled between the at least one actuator and the MEMS mirror for transferring a pulling force of the bending of the at least one actuator to the MEMS mirror. Each flexible interconnect element out of the at least one interconnect element may be an elongated structure comprising at least two turns at opposing directions, each turn greater than 120°.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: March 14, 2023
    Assignee: INNOVIZ TECHNOLOGIES LTD
    Inventors: Ronen Eshel, Michael Girgel
  • Patent number: 11567209
    Abstract: A LIDAR system, comprising: (a) a plurality of anchored LIDAR sensing units, each anchored LIDAR sensing unit comprising at least: (i) a housing; (ii) at least one detector, mounted in the housing, configured to detect light signals arriving from objects in a field of view of the anchored LIDAR sensing unit; and (iii) a communication unit, configured to output detection information which is based on outputs of the at least one detector and which is indicative of existence of the objects; and (b) at least one integratory processing unit, configured to receive the detection information from two or more of the plurality of anchored LIDAR sensing units, and to process the received detection information to provide a three dimensional model of a scene which is larger than any of the field of views of the independent anchored LIDAR sensing units.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: January 31, 2023
    Assignee: Innoviz Technologies Ltd.
    Inventors: Amit Steinberg, Alon Gan
  • Publication number: 20220404471
    Abstract: An electro-optical system may include a light source configured to emit a beam of radiation, and a pivotable scanning mirror configured to project the beam of radiation toward a field of view. The electro-optical system may also include a first electrode associated with the scanning mirror, and a plurality of second electrodes spaced apart from the first electrode. The electro-optical system may further include a processor programmed to determine a capacitance value for each of the second electrodes relative to the first electrode. Each of the determined capacitance values may have an accuracy in a range of ± 1/100 to ± 1/1000 of a difference between a highest capacitance value and a lowest capacitance value between the first electrode and a respective one of the second electrodes. The processor may also be programmed to determine an orientation of the scanning mirror based on one or more of the determined capacitance values.
    Type: Application
    Filed: September 17, 2020
    Publication date: December 22, 2022
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Yair Alpern, Michael Girgel, Nir Goren, Yuval Stern, John Miller, Sason Sourani
  • Publication number: 20220397647
    Abstract: A LIDAR system includes a light source configured to generate a plurality of laser beams arranged in a beam pattern, a rotatable deflector configured to rotate about a scanning axis, a beam rotator configured to cause rotation of the beam pattern of the plurality of laser beams relative to the scanning axis of the rotatable deflector and at least one sensor configured to receive, via the rotatable deflector and the beam rotator, laser light resulting from one or more of the plurality of laser beams reflected from at least one object in the field of view of the LIDAR system wherein the multibeam array is maintained at a substantially fixed orientation with respect to the optical axis.
    Type: Application
    Filed: June 10, 2022
    Publication date: December 15, 2022
    Applicant: Innoviz Technologies Ltd.
    Inventors: Nir GOREN, Uri POMERANTZ, Yonatan KORNER, Nimrod ARI
  • Patent number: 11500076
    Abstract: The present disclosure provides systems and methods that use LIDAR technology. In one implementation, a LIDAR system includes at least one processor configured to: control activation of at least one light source for illuminating a field of view; receive from at least one sensor a reflection signal associated with an object in the field of view, a time lapse between light leaving the at least one light source and reflection impinging on the least one sensor constituting a time of flight; and alter an amplification parameter associated with the at least one sensor during the time of flight.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 15, 2022
    Assignee: Innoviz Technologies Ltd.
    Inventors: Omer David Keilaf, Oren Buskila, Ronen Eshel, Yair Antman, Amit Steinberg, David Elooz, Julian Vlaiko, Guy Zohar, Shahar Levy
  • Publication number: 20220342047
    Abstract: A LIDAR system includes at least one light source; at least one deflector configured to scan light emitted by the at least one light source over a field of view of the LIDAR system; and at least one processor configured to cause the at least one deflector to scan the field of view of the LIDAR system with a first scan pattern including a first series of scan lines and subsequently with a second scan pattern including a second series of scan lines that are interlaced with the first series of scan lines to provide a single frame scan pattern, and analyze reflection signals associated with the single frame scan pattern to determine whether at least one target object present in the field of view of the LIDAR system is moving.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 27, 2022
    Applicant: Innoviz Technologies Ltd.
    Inventor: Avishay MOSCOVICI