Patents Assigned to Institut Francais du Petrole
  • Patent number: 7483822
    Abstract: A method intended for gradual deformation of a Boolean model allowing best simulation of the spatial configuration, in a heterogeneous underground zone, of geologic objects defined by physical quantities. The model is optimized by means of an iterative optimization process from realizations including objects whose number is a random Poisson variable of determined mean, and by minimizing an objective function. In order to impose a continuity in the evolution of the objects in size, number, positions, within the model, a combined realization obtained by combining on the one hand an initial realization comprising a number of objects corresponding to a first mean value and at least another independent realization having another number of objects corresponding to a second mean value is constructed. An application is construction of a Boolean underground reservoir model allowing simulation of the configuration of heterogeneities such as fractures, channels, etc.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: January 27, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Mickaële Le Ravalec-Dupin, Lin-Ying Hu
  • Patent number: 7483782
    Abstract: The present invention relates to a method of estimating the fuel/air ratio in each cylinder of an injection internal-combustion engine comprising an exhaust circuit on which a detector measures the fuel/air ratio of the exhaust gas. An estimator based on an adaptive nonlinear filter is coupled with a physical model representing the expulsion of the gases from the cylinders and their travel in the exhaust circuit to the detector. The estimator is also coupled with an estimation of the fuel/air ratio measured from at least one variable of said model such as the total mass of exhaust gas and the mass of fresh air. The method has application to engine controls.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: January 27, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Jonathan Chauvin, Philippe Moulin, Gilles Corde, Nicolas Petit, Pierre Rouchon
  • Patent number: 7479217
    Abstract: The invention concerns a process for treating a hydrocarbon feed comprising a series of a first upstream process for hydrocarbon hydroconversion comprising at least one reaction chamber, the reaction or reactions occurring inside said chambers and employing at least one solid phase, at least one liquid phase and at least one gas phase, and a second downstream steam reforming process comprising at least one reaction chamber, characterized in that the said upstream process is carried out in a “slurry” and/or an ebullated bed mode and in that the downstream process comprises a first step for at least partial conversion of hydrocarbons heavier than methane into methane, termed the pre-reforming step, and in that the reaction or reactions occurring inside the chambers of the downstream stream reforming process enables the production of a reagent, namely hydrogen, which is necessary for the reactions in the first upstream process.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: January 20, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Mathieu Pinault, Thierry Gauthier, Stéphane Kressmann, Arnault Selmen
  • Patent number: 7476635
    Abstract: Described is a process for the preparation of a supported zeolite membrane that consists of a zeolite/substrate composite layer, whose zeolite phase exhibits a crystallinity of at least 85%, comprising: a) the formation of a gel or a solution that comprises at least one source of silica and water, supplemented with at least one polar organic compound, b) bringing into contact said gel or said solution with a porous substrate, c) the crystallization of the zeolite starting from said gel or said solution; and d) the elimination of residual agents. The molar ratio of the water to the silica in the gel or the solution in stage a) is between 27:1 and 35:1. The crystallization time of stage c) is at least 25 hours. Said process is particularly suited for the preparation of zeolite membranes whose zeolite phase is of the MFI-structural type.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: January 13, 2009
    Assignee: Institut Francais Du Petrole
    Inventors: Christophe Chau, Michaeel Sicard, Ronan Le Dred
  • Patent number: 7476773
    Abstract: A process for preparing a gas oil cut comprises the following steps in succession: 1) oligomerizing an olefinic C2-C12 hydrocarbon cut, preferably C3-C7 and more preferably C3-C5; 2) separating the mixture of products obtained in step 1) into three cuts: a light cut containing unreacted C4 and/or C5 olefinic hydrocarbons, an intermediate cut having a T95 in the range 200-220° C. and a heavy cut comprising the complement; T95 being the temperature at which 95% by weight of product has evaporated, as determined in accordance with standard method ASTM D2887; 3) oligomerizing the intermediate cut obtained in the separation step; characterized in that in step 3), oligomerization is carried out in the presence of an olefinic C4 and/or C5 hydrocarbon cut in a weight ratio of intermediate cut to olefinic C4 and/or C5 cut in the range of 60/40 to 80/20.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 13, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Sylvain Louret, Vincent Coupard, Laurent Simon
  • Patent number: 7473368
    Abstract: A simulated moving bed (SMB) separation device comprises at least one column, beds of adsorbent arranged in this column, trays Pi with a chamber Ci for distribution and extraction of fluids, a multi-way rotary valve for the distribution of the fluids feeding or leaving said trays, and junction lines Li between this valve and said trays. The SMB device also comprises a plurality of bypass lines Li,i+1 between adjacent lines, these bypasses being outside the multi-way rotary valve and situated in proximity to this valve, for the circulation of rinsing liquids with a small or zero concentration gradient. The invention makes it possible to use all types of distribution and extraction trays and all types of adsorbent loading, while preserving a high level of product purity. Application of the separation devices is in particular to the separation of paraxylene or metaxylene from a C8 aromatic charge.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: January 6, 2009
    Assignee: Institut Francais du Petrole
    Inventor: Gérard Hotier
  • Patent number: 7470359
    Abstract: The method enables the antihydrate compounds contained in a condensed-hydrocarbon liquid feedstock arriving through pipe 1 to be extracted. The liquid feedstock is brought into contact, in zone ZA, with a non-aqueous ionic liquid having the general formula Q+ A31 , where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A31 designates an anion able to form a liquid salt. The antihydrate compounds in the liquid hydrocarbon feedstock evacuated through pipe 2 are eliminated. The ionic liquid charged with antihydrate compounds is evacuated through pipe 3, then introduced into evaporator DE to be heated in order to evaporate the antihydrate compounds. The regenerated ionic liquid is recycled through pipes 8 and 9 to zone ZA. The antihydrates are evacuated through pipe 7a.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: December 30, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Renaud Cadours, Fabrice Lecomte, Lionel Magna, Cécile Barrere-Tricca
  • Patent number: 7470829
    Abstract: The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in column C2. The solvent charged with acid compounds is regenerated in zone R. The purified gas evacuated by pipe 9 includes some of the solvent. The method enables the solvent contained in the purified gas to be extracted. In zone ZA, the purified gas is brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A?, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A? designates an anion able to form a liquid salt. The solvent-impoverished purified gas is evacuated through pipe 17. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The solvents separated from the ionic liquid in evaporator DE are recycled.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: December 30, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Renaud Cadours, Fabrice Lecomte, Lionel Magna, Cécile Barrere-Tricca
  • Patent number: 7469781
    Abstract: A device for conveying inhomogenous solid matter, particularly biomass, includes an endless screw. The endless screw is located in a sleeve fitted with a counter screw, which allows better transportation, and the possible creation of a plug of compressed material at predetermined points on the screw, which isolates the device from the outside. The device can be coupled with at least one other endless screw, which can be put under a pressure greater than the device. The screw erodes the plug and transports the matter so obtained, for example to a pressurized reactor. With the device, a pressure difference between for example a raw material storage tank and a reactor does not lead to excessive cost in terms of pressurizing gas.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: December 30, 2008
    Assignees: Commissariat a l'Energie Atomique, Institut Francais du Petrole
    Inventors: Thierry Chataing, Jean-Pierre Grangier, Maurice Rostaing, Thomas Koch
  • Patent number: 7464762
    Abstract: A system inserted between the base of a riser (5) and a production well flowline for collecting an effluent consisting of at least a gas phase and a liquid phase, includes a capacity (1) including an inlet port for the effluent and two outlet ports, one in the upper part of said capacity for the gas phase, the other in the lower part for the liquid phase communicating with the base of the riser, a gas supply line (2) connecting the gas outlet port to the riser at a predetermined height H, including a flow control valve (3), and an instrumentation set for locating the level of the liquid/gas interface in the capacity, a computer receiving the instrumentation data for determining the instructions for controlling said flow control valve so as to adjust the volume of gas fed at height H into the riser.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 16, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Emmanuel Duret, Quang-Huy Tran, Yannick Peysson, Jean Falcimaigne
  • Patent number: 7464582
    Abstract: To perform at least an evaluation of the inlet capillary pressure value of a porous medium. From a displacement experiment on a sample of the medium, a curve of the volume of saturating fluid expelled from the sample as a function of time is drawn. The differential pressure between the inlet face and at least one point located at a distance Li from the inlet face that is greater than the distance between the inlet face and the interface between the two fluids within the sample is then continuously measured as a function of time. At least one motive pressure gradient of the first fluid is thereafter calculated by means of distance Li and of the curve. Finally, at least one value of the inlet capillary pressure is determined by calculating the difference between the differential pressure and the value of the motive pressure gradient of the expelled fluid. The method can be applied notably to production of oil reservoirs for example.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: December 16, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Egermann, Jean-Marc Lombard, Pierre Bretonnier
  • Patent number: 7459011
    Abstract: The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in zone C. The solvent charged with acid compounds is regenerated in zone R. The acid gases, released into pipe 5 upon regeneration, include a quantity of solvent. The method enables the solvent contained in the acid gases to be extracted. In zone ZA, the acid gases are brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A?, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A? designates an anion able to form a liquid salt. The solvent is removed from the acid gases evacuated through pipe 6. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The ionic liquid regenerated is recycled through pipes 8 and 9 to zone ZA. The solvent is evacuated through pipe 13.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: December 2, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Renaud Cadours, Fabrice Lecomte, Lionel Magna, Cécile Barrere-Tricca
  • Publication number: 20080287556
    Abstract: The preparation is described of a Fischer-Tropsch catalytic precursor based on cobalt supported on alumina, optionally containing up to 10% by weight of silica, which comprises: a) treatment of the alumina with a silicon compound selected from those having general formula (I) Si(OR)4-nR?n (I) wherein n ranges from 1 to 3 wherein R? is selected from primary hydrocarbyl radicals having from 1 to 20 carbon atoms; wherein R is selected from primary hydrocarbyl radicals having from 1 to 6 carbon atoms; b) drying and subsequent calcination of the modified carrier obtained at the end of step (a) thus obtaining a silanized carrier; c) subsequent deposition of cobalt on the silanized carrier obtained at the end of step (b); d) drying and subsequent calcination of the supported cobalt obtained at the end of step (c) thus obtaining the final catalytic precursor; the above final catalytic precursor having a content of SiO2 deriving from the compound having general formula (I) ranging from 4.5 to 10% by weight.
    Type: Application
    Filed: July 13, 2006
    Publication date: November 20, 2008
    Applicants: ENI S.P.A., INSTITUT FRANCAIS DU PETROLE
    Inventors: Giuseppe Bellussi, Luciano Cosimo Carluccio, Roberto Zennaro, Gastone Del Piero
  • Patent number: 7452840
    Abstract: The present invention relates to agglomerated zeolitic adsorbents containing zeolite X and an inert binder, the inert binder containing at least 80% by weight of clay which has undergone zeolitization by the action of an alkaline solution, the zeolite X having with an Si/Al ratio such that 1.15<Si/Al?1.5, at least 90% of the exchangeable cationic sites of the zeolite X of which are occupied either by barium ions alone or by barium ions and potassium ions whose Dubinin volume is greater than or equal to 0.240 cm3/g. They are obtained by agglomerating zeolite powder with a binder, followed by the zeolitization of the binder, the exchange of the ions of the zeolite by barium ions (and potassium ions) and the activation of the adsorbents thus exchanged.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: November 18, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Dominique Plee, Alain Methivier
  • Patent number: 7454322
    Abstract: Method of modeling the biodegradation of hydrocarbons trapped in an oil reservoir or trap through the action of the bacterial population in an underlying aquifer.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: November 18, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Bernard Carpentier, Ludovic Martin
  • Patent number: 7449421
    Abstract: A catalyst comprising at least one zeolite (molecular sieve) chosen from the group formed by the TON structure type zeolites (Theta-1, ZSM-22, ISI-1, NU-10 and KZ-2) and at least one zeolite chosen from the group formed by the zeolites (ZSM-48, EU-2, EU-11 and ZBM-30), at least one porous mineral matrix, at least one hydro-dehydrogenating element, preferably chosen from the elements of Group VIB and Group VIII of the periodic table, is used for the conversion of hydrocarbons, in particular for the reduction of the pour point of charges containing long (more than 10 carbon atoms) linear and/or slightly branched paraffins, in particular in order to convert, with a good yield, charges having high pour points to at least one cut having a low pour point and a high viscosity index for oil bases.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: November 11, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Emmanuelle Guillon, Johan Martens
  • Patent number: 7445661
    Abstract: The fumes from gas turbine TG are cooled by heat exchangers E1, E2, E01, E02 and E03 and compressed by compressors C1 and C2. The cold and high-pressure fumes are depleted in carbon dioxide in treating plant 10. The carbon dioxide can be injected into an underground reservoir. The fumes depleted in carbon dioxide are heated by heat exchangers E1 and E2, and expanded by turbines T2, then T1. In particular, after expansion in turbine T2 and before expansion in turbine T1, the fumes are heated using the heat of the fumes from compressor C2.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: November 4, 2008
    Assignee: Institut Francais du Petrole
    Inventor: Yves Charron
  • Patent number: 7435334
    Abstract: The invention relates to a process for the production of a gasoline with a low sulfur content starting from an initial gasoline that comprises olefins, thiophene compounds and mercaptans and comprises a stage for treating at least one fraction of the initial gasoline under conditions of alkylation of the thiophene compounds by the olefins, a stage for treating at least one fraction of the effluent that is obtained from the preceding stage under conditions of addition of the olefins to the mercaptans, and a distillation stage for obtaining a light fraction that is low in thiophene compounds and mercaptans, and a heavy fraction that is high in sulfur.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: October 14, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Julia Magne-Drisch, Florent Picard
  • Patent number: 7437247
    Abstract: The invention relates to a method of estimating the flow restart conditions of a paraffinic hydrocarbon in a pipe, wherein the following stages are carried out: selecting a theological model, determining the temperature and shear stress fields in the steady hydrocarbon flow, evaluating the conductive thermal exchanges during circulation standstill phases, from the steady flow temperatures and the standstill time taken into account, selecting various sections of the pipe and recording the thermomechanical scenarios undergone by the hydrocarbon in these sections, experimentally measuring the rheological parameters of the model on a sample of the hydrocarbon, according to each one of said scenarios, and taking into account these experimental measurements to evaluate the value of the pressure that restarts circulation of the paraffinic hydrocarbon in the pipe.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: October 14, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Anthony Wachs, Françoise Brucy, Isabelle Henaut
  • Patent number: 7435337
    Abstract: The invention describes the application of caesium-exchanged X, Y or LSX type faujasite zeolites for intense desulphurization of FCC gasoline, and to a method for preparing said zeolites.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: October 14, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Michel Thomas, Alexandre Nicolaos