Patents Assigned to Institut National des Sciences Appliquees
  • Publication number: 20230109283
    Abstract: The invention relates to novel biocompatible hybrid nanoparticles of very small size, useful in particular for diagnostics and/or therapy. The purpose of the invention is to offer novel nanoparticles which are useful in particular as contrast agents in imaging (e.g. MRD and/or in other diagnostic techniques and/or as therapeutic agents, which give better performance than the known nanoparticles of the same type and which combine both a small size (for example less than 20 nm) and a high loading with metals (e.g. rare earths), in particular so as to have, in imaging (e.g. MRI), strong intensification and a correct response (increased relaxivity) at high frequencies.
    Type: Application
    Filed: October 4, 2022
    Publication date: April 6, 2023
    Applicants: NANOH, UNIVERSITE LYON 1 CLAUDE BERNARD, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON
    Inventors: François LUX, Olivier TILLEMENT, Maxime SAINT JEAN, Pierre MOWAT, Pascal PERRIAT, Stéphane ROUX, Anna MIGNOT
  • Patent number: 11566234
    Abstract: The invention relates to a method for manufacturing a bio-ink by additive deposition, which comprises supplying: a first solution including between 5 and 40 wt. % gelatin; a second solution including between 15 and 35.wt. % alginate; a third solution including between 1 and 15 wt. % fibrinogen, and optionally living cells in suspension; and creating a mixture including: around 35 to 65 vol. % of the first solution; around 15 to 35 vol. % of the second solution; and around 15 to 35 vol. % of the third solution, said proportions being selected so that they add up to 100%. Said bio-ink allows the additive deposition of objects that can be polymerised by means of a solution including calcium ions and thrombin. Said objects can be incubated and can be used as a substitute for body tissue, for example (with added fibroblasts) as skin substitute.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: January 31, 2023
    Assignees: LAB SKIN CREATIONS, UNIVERSITE CLAUDE BERNARD LYON 1, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, ECOLE SUPERIEURE DE CHIMIE, PHYSIQUE, ELECTRONIQUE DE LYON
    Inventors: Christophe Marquette, Léa Pourchet, Amélie Thepot, Morgan Dos Santos
  • Publication number: 20220390458
    Abstract: The invention relates a fluorescent compound of formula I: wherein A is selected from P, P?O and N; ·R1 is a residue comprising an oxygen atom·R2 is a residue comprising an oxygen atom, or a halogen, ·R3, R4 and R5 are alkyls, possibly substituted or a salt or a solvate thereof. The compound is useful as a fluorescent probe sensitive to membrane fluidity and for diagnosing cancer.
    Type: Application
    Filed: September 22, 2020
    Publication date: December 8, 2022
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), UNIVERSITE CLAUDE BERNARD LYON 1, INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE (INSERM), INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, CPE LYON FORMATION CONTINUE ET RECHERCHE pouvant être précédée ou suivie par CPE LYON FCR, CENTRE LEON BERARD, HOSPICES CIVILS DE LYON
    Inventors: Thierry GRANJON, Ofelia MANITI, Olivier MARCILLAT, Peter GOEKJIAN, Mouhedine CHENIOUR, Arnaud VIGNERON, David GUEYRARD, Sébastien IBANEZ
  • Patent number: 11497818
    Abstract: The invention relates to novel biocompatible hybrid nanoparticles of very small size, useful in particular for diagnostics and/or therapy. The purpose of the invention is to offer novel nanoparticles which are useful in particular as contrast agents in imaging (e.g. MRI) and/or in other diagnostic techniques and/or as therapeutic agents, which give better performance than the known nanoparticles of the same type and which combine both a small size (for example less than 20 nm) and a high loading with metals (e.g. rare earths), in particular so as to have, in imaging (e.g. MRI), strong intensification and a correct response (increased relaxivity) at high frequencies.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: November 15, 2022
    Assignees: NANOH, UNIVERSITE LYON 1 CLAUDE BERNARD, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON
    Inventors: François Lux, Olivier Tillement, Maxime Saint Jean, Pierre Mowat, Pascal Perriat, Stéphane Roux, Anna Mignot
  • Publication number: 20220317028
    Abstract: A method for analysing a sample uses a resonant support having a surface on which a plurality of separated photonic crystals extends. At least two crystals are configured to capture the same analyte. A resonance wavelength associated with each crystal varies with an amount of analyte in contact with the crystal. The wavelengths define a resonance spectral band between 200-1500 nm. The transmission/reflection of the light is maximum at an associated resonance wavelength. The method includes: illuminating the support in the resonance spectral band, the intensity of the lamination being variable in band; acquiring a measurement image using an image sensor, the image having different regions-of-interest each optically coupled to a photonic crystal; using a reference image representative of an image acquired by the image sensor, when the support is illuminated in the resonance spectral band in a reference configuration; and comparing the measurement image with the reference image.
    Type: Application
    Filed: June 4, 2020
    Publication date: October 6, 2022
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, CPE LYON FORMATION CONTINUE ET RECHERCHE, ECOLE CENTRALE DE LYON, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE CLAUDE BERNARD LYON 1, AVALUN, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Mathieu DUPOY, Taha BENYATTOU, Lotfi BERGUIGA, Jean-Marc FEDELI, Maryse FOURNIER, Nicolas GAIGNEBET, Cecile JAMOIS, Patrick POUTEAU
  • Publication number: 20220317031
    Abstract: A method for analysing a sample uses a resonant support. The sample extends on the support having a surface on which a plurality of separated photonic crystals extend. The sample extends between a light source and the crystals, wherein a resonance wavelength is associated with each crystal addressing the analyte and the wavelengths of the crystals define a resonance spectral band extending between 2 ?m and 20 ?m. The transmission or reflection of light by each crystal addressing the analyte is maximum at the associated resonance wavelength. The method includes illuminating the support by the light source, the light source emitting an illumination lightwave defining an illumination spectral band which at least partially covers the resonance spectral band, such that a plurality of crystals are simultaneously illuminated; acquiring an image of the support, and then determining the presence of the analyte in the sample from the image.
    Type: Application
    Filed: June 4, 2020
    Publication date: October 6, 2022
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, CPE LYON FORMATION CONTINUE ET RECHERCHE, ECOLE CENTRALE DE LYON, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE CLAUDE BERNARD LYON 1, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Mathieu DUPOY, Maryse FOURNIER, Taha BENYATTOU, Cécile JAMOIS, Lotfi BERGUIGA, Nicolas GAIGNEBET, Thomas GEHIN
  • Patent number: 11461095
    Abstract: The present disclosure relates to a method of storing, by a load and store circuit or other processing means, a variable precision floating point value to a memory address of a memory, the method comprising: reducing the bit length of the variable precision floating point value to no more than a size limit, and storing the variable precision floating point value to one of a plurality of storage zones in the memory, each of the plurality of storage zones having a storage space equal to or greater than the size limit (MBB).
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: October 4, 2022
    Assignees: Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National des Sciences Appliquées de Lyon
    Inventors: Andrea Bocco, Florent Dupont De Dinechin, Yves Durand
  • Patent number: 11408057
    Abstract: An austenitic alloy based on nickel, chromium and iron, and having a high aluminum content, intended for use at a given operating temperature (Ts) between 900° C. and 1200° C., the alloy comprising the following elements, in weight percent: chromium between 20% and 32%, nickel between 30% and 60%, aluminum between 3.5% and 6%, carbon between 0.4% and 0.7%, titanium between 0.05% and 0.3%, niobium and/or tantalum between 0.6% and 2%, an element, composed of at least one rare earth and/or hafnium, between 0.002% and 0.1%, silicon between 0 and 0.5%, manganese between 0 and 0.5%, tungsten between 0 and 2%, and iron as the balance of the elements in the alloy. The alloy has less than 1% by volume of an intermetallic B2-NiAl phase and less than 1% by volume of an alpha prime phase rich in chromium, after subjecting the alloy to an operating temperature (Ts).
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: August 9, 2022
    Assignees: Manoir Pitres, Université de Rouen Normandie, Centre National de la Recherche Scientifique, Institut National des Sciences Appliquées Rouen Normandie
    Inventors: Mathieu Couvrat, Antoine Facco, Cristelle Pareige
  • Publication number: 20220146402
    Abstract: A particle detector includes at least one resonant cavity partially formed at least by a first reflector, a second reflector disposed at a distance from the first reflector and a channel located between the first and second reflectors, the channel being intended to receive at least one fluid comprising particles and to receive at least one light radiation; and at least one detection system having at least one photodetector. The particle detector is configured so that a portion of the light radiation present in the channel escapes from the cavity throughout the second reflector and reaches the detection system, thereby enabling the at least one photodetector to detect leakage of the cavity. The second reflector is a photonic crystal membranes PCM based reflector.
    Type: Application
    Filed: December 23, 2019
    Publication date: May 12, 2022
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, CPE LYON, ECOLE CENTRALE DE LYON, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE CLAUDE BERNARD LYON 1
    Inventors: Gabriel JOBERT, Salim BOUTAMI, Maryse FOURNIER, Christian SEASSAL
  • Publication number: 20220091018
    Abstract: An optical particle detector including at least one channel intended to receive a fluid carrying at least one particle, and across which light rays are intended to pass such that the light rays are partially scattered by the at least one particle, a plurality of photodetectors capable of receiving said scattered light rays, wherein the detector includes at least one optical waveguide configured to collect, at least at one entrance of the waveguide, light rays that were not scattered by the at least one particle and having crossed the channel, and to reinject the unscattered light rays into the channel through at least one exit of the waveguide.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 24, 2022
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, CPE LYON FORMATION CONTINUE ET RECHERCHE, ECOLE CENTRALE DE LYON, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE CLAUDE BERNARD LYON 1
    Inventors: Salim BOUTAMI, Maryse FOURNIER, Gabriel JOBERT, Christian SEASSAL, Cécile JAMOIS
  • Publication number: 20220059261
    Abstract: A method for producing a permanent or soft magnet including the following steps: a) providing: a solution containing a solvent in which are dispersed a set of objects which possess a permanent magnetic moment; a substrate on which are fixed to the surface or within a cavity that it may have, a 1st pad and a 2nd pad, said 1st pad includes a face facing and parallel to a face that the 2nd pad includes; b) the solution is deposited on the surface of the substrate or, as the case may be, within its cavity; c) the substrate is placed in a magnetic field so that the set of objects are grouped together between the face of the 1st pad and the face of the 2nd pad so as to form a permanent magnet.
    Type: Application
    Filed: December 12, 2019
    Publication date: February 24, 2022
    Applicants: INSTITUT NATIONAL DES SCIENCES APPLIQUÉES, UNIVERSITE PAUL SABATIER TOULOUSE III, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Lise-Marie LACROIX, Guillaume VIAU, Thierry LEICHLE, Pierre MORITZ
  • Patent number: 11253537
    Abstract: Polypeptides having the ability to specifically form connections of glucosyl units in alpha 1,3 on an acceptor having at least one hydroxyl moiety are presented. The polypeptides include i) the pattern I of sequence SEQ ID NO: 1, ii) the pattern II of sequence SEQ ID NO: 2, iii) the pattern III of sequence SEQ ID NO: 3, and iv) the pattern IV of sequence SEQ ID NO: 4, or derivates from one or several of said patterns, wherein the polypeptide furthermore has an aspartic residue (D) at position 5 of the pattern II (SEQ ID NO: 2), a glutamic acid residue (E) at position 6 of the pattern III (SEQ ID NO: 3) an an aspartic acid residue (D) at position 6 of the pattern IV (SEQ ID NO: 4). Methods for producing acceptors connected to glucosyl units in alpha 1,3 using the polypeptides are also provided.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: February 22, 2022
    Assignees: INSTITUT NATIONAL DE RECHERCHE POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE TOULOUSE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Magali Remaud-Simeon, Marlene Vuillemin, Claire Moulis, Pierre Monsan, Sandrine Morel
  • Publication number: 20220028574
    Abstract: The invention relates to an electrically insulating composite material (1) comprising a polyepoxide matrix (2) of cycloaliphatic type or of diglycidyl ether type in a content of less than 40% by mass, from 20 to 75% by mass of one or several micrometric and/or mesometric filler(s) (3), and from 0.1 to 20% by mass of at least one ionic liquid (4), the masses being expressed relative to the total mass of the electrically insulating composite material (1). The invention also relates to a method for manufacturing such an electrically insulating composite material (1), as well as its use for an electrically insulating support (9) in a metal-enclosed substation (5).
    Type: Application
    Filed: December 27, 2019
    Publication date: January 27, 2022
    Applicants: SUPERGRID INSTITUTE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), UNIVERSITE CLAUDE BERNARD LYON 1, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE JEAN MONNET SAINT ETIENNE
    Inventors: Thibaut LEFORT, Damien BACHELLERIE, Sébastien PRUVOST, Jannick DUCHET, Sébastien LIVI
  • Publication number: 20210364663
    Abstract: The invention concerns a method for processing energy spectra of radiation transmitted by an object irradiated by an ionising radiation source, in particular X-ray radiation, for medical imaging or non-destructive testing applications. The method uses a detector comprising a plurality of pixels, each pixel being capable of acquiring a spectrum of the radiation transmitted by the object. The method makes it possible, based on a plurality of detected spectra, to estimate a spectrum, referred to as the scattering spectrum, representative of radiation scattered by the object. The estimation involves taking into account a spatial model of the scattering spectrum. Each acquired spectrum is corrected taking into account the estimated scattering spectrum. The invention makes it possible to reduce the influence of the scattering, by the object, of the spectrum emitted by the source.
    Type: Application
    Filed: October 7, 2019
    Publication date: November 25, 2021
    Applicants: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON
    Inventors: Odran PIVOT, Joachim TABARY, Clarisse FOURNIER, Jean Michel LETANG, Simon RIT
  • Publication number: 20210364660
    Abstract: A multilayer scintillation detector, includes at least three layers superposed on one another, and each extending parallel to a plane, called the detection plane, wherein each layer is formed by a first material, called a scintillation material, capable of interacting with an ionizing radiation and of forming, following the interaction, a scintillation light in a scintillation spectral band; each layer has a plurality of light guides, respectively extending parallel to the detection plane, according to a length, the light guides being disposed, over all or part of their length, parallel to an axis of orientation; the axis of orientation of the light guides of each layer is oriented, in the detection plane, according to an orientation, the orientations of the respective axes of orientation of at least three layers being different from one another, such that each layer has an associated orientation; and the scintillation material has a first refractive index.
    Type: Application
    Filed: March 20, 2019
    Publication date: November 25, 2021
    Applicants: UNIVERSITE CLAUDE BERNARD LYON 1, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, HOSPICES CIVILS DE LYON, CPE LYON FORMATION CONTINUE ET RECHERCHE, ECOLE CENTRALE DE LYON
    Inventors: Patrick PITTET, Guo-Neng LU, Patrice JALADE, Jean-Marc GALVAN
  • Patent number: 11171396
    Abstract: A polarizing screen includes an arrangement of at least one, electrically conductive, polarizing cell, which at least one cell is frequency- and polarization-selective, for transforming the polarization of the electric component E of the transverse electromagnetic (TEM) wave, received with linear polarization, into an electromagnetic wave with circular polarization. The four lateral walls of each section of waveguide forming a polarizing cell are each open over their entire length due to a median continuous slot, parallel to the direction of propagation of the incident electromagnetic wave, so as to form four angled electrically conductive plates.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: November 9, 2021
    Assignees: THALES, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE RENNES
    Inventors: Hervé Legay, Carlos Molero Jimenez, Maria Garcia Vigueras
  • Publication number: 20210323175
    Abstract: This two-stage ejector comprises a body (16) including: a compressed air intake (E); a compressed air injection nozzle (17) placed downstream of the air intake; a central duct (18); and an outlet mixer (19). The injection nozzle (17), the central duct (18) and the outlet mixer (19) are disposed along an axis (X-X?) of the ejector so that the ends of the axial duct are respectively spaced apart from the nozzle and from the mixer so as to form a first and a second suction zone (23, 25) that communicates with a single common air suction chamber (21).
    Type: Application
    Filed: July 23, 2019
    Publication date: October 21, 2021
    Applicant: INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE TOULOUSE (INSA TOULOUSE)
    Inventors: Stéphane Orieux, Lucien Baldas
  • Patent number: 11148957
    Abstract: Disclosed is a method and system for recovering at least rare earth elements from within an object A consisting of at least one first rare earth portion or a mixture of rare earth elements and a second metal portion. The method includes a solvothermal treatment step that places the object in contact with a fluid for causing at least one rare earth portion and/or mixture of rare earth elements and the metal portion to oxidize in order to separate same, the value of the reaction temperature Tr is selected according to the nature of the object, the reaction following a R-M?R(X)x+M(X)y scheme, where R is the rare earth element or a mixture of rare earth elements, M is the transition metal, and (X) is a group which depends on the fluid used.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: October 19, 2021
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE ROUEN-NORMANDIE, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE ROUEN NORMANDIE
    Inventors: Jean-Marie Le Breton, Nicolas Maât, Virginie Nachbaur
  • Publication number: 20210206938
    Abstract: A method for producing a porous silicone material including the following steps: 1) implementing a direct emulsion E of silicone in water including: A) a silicone base A crosslinkable by polyaddition or polycondensation; B) at least one nonionic silicone surfactant B having a cloud point between 10 and 50° C.; C) optionally, at least one catalyst C; and D) water; 2) heating the emulsion E to a temperature greater than or equal to 60° C. to obtain a porous silicone material; and 3) optionally, drying the porous silicone material.
    Type: Application
    Filed: May 17, 2019
    Publication date: July 8, 2021
    Applicants: Elkem Silicones France SAS, Institut National des Sciences Appliquees de Lyon, Universite Claude Bernard Lyon I, Centre National de la Recherche Scientifique - CNRS, Universite Jean Monnet Saint Etienne
    Inventors: Francois GANACHAUD, Etienne FLEURY, Gabriel LARRIBE, David MARIOT, Frederic MARCHAL
  • Patent number: 11049795
    Abstract: A power electronic module (1) including at least one semiconductor (5) that is connected to connection conductors (6, 7), and including a dielectric carrier (10) having both a fixed layer (9), on which at least one of said connection conductors (6) is mounted, and a movable layer (11), the fixed layer (9) and the movable layer (11) exhibiting similar dielectric permittivities and being superposed along at least one surface facing the at least one connection conductor (6).
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: June 29, 2021
    Assignees: Supergrid Institute, Universite Claude Bernard Lyon 1, Ecole Centrale De Lyon, Institut National Des Sciences Appliquees De Lyon, Centre National De La Recherche Scientifique
    Inventor: Cyril Buttay