Patents Assigned to Institute for Cancer Research
  • Patent number: 10995088
    Abstract: Provided are compounds of the Formula (I), or a pharmaceutically acceptable salt thereof: wherein W, X, Y, Z, x, R1, R2, R3, x and n are defined in the specification. The compounds are inhibitors of lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) family members (LOXL1, LOXL2, LOXL3, LOXL4) and are useful in therapy, particularly in the treatment of cancer. Also disclosed are LOX inhibitors for use in the treatment of a cancer associated with EGFR and biomarkers that predict responsiveness to a LOX inhibitor.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: May 4, 2021
    Assignee: THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL
    Inventors: Caroline Springer, Richard Marais, Dan Niculescu-Duvaz, Leo Leung, Deborah Smithen, Cedric Callens, Haoran Tang
  • Patent number: 10987356
    Abstract: The present disclosure provides pharmaceutical compositions including a CDK inhibitor and an HSP90 inhibitor, as well as methods of treating cancer or a tumor in a subject by administering a CDK inhibitor and an HSP90 inhibitor to the subject.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: April 27, 2021
    Assignee: Institute For Cancer Research
    Inventors: Shuai Zhao, Wafik S. El-Deiry
  • Publication number: 20210113615
    Abstract: The invention relates to heterodimeric inactivatable chimeric antigen receptors (CARs) and their use for treatment.
    Type: Application
    Filed: April 12, 2019
    Publication date: April 22, 2021
    Applicants: Ludwig Institute for Cancer Research Ltd., École Polytechnique Fédérale de Lausanne
    Inventors: George COUKOS, Melita IRVING, Bruno CORREIA, Pablo GAINZA-CIRAUQUI, Greta Maria Paola GIORDANO ATTIANESE
  • Patent number: 10983117
    Abstract: Disclosed are devices that comprise a protein, such as an antibody, placed into electronic communication with a semiconductor material, such as a carbon nanotube. The devices are useful in assessing the presence or concentration of analytes contacted to the devices, including the presence of markers for prostate cancer and Lyme disease.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 20, 2021
    Assignees: The Trustees of the University of Pennsylvania, The Institute For Cancer Research
    Inventors: Alan T. Johnson, Jr., Mitchell Lerner, Matthew W. Robinson, Tatiana Pazina, Dustin Brisson, Jennifer Dailey, Brett R. Goldsmith
  • Publication number: 20210106694
    Abstract: The present application is directed to compounds of Formula (I): compounds of Formula (II): compounds of Formula (III): and compounds of Formula (IV): compositions comprising these compounds and their uses, for example as medicaments and/or diagnostics. Specifically claimed are: (1) compounds containing reactive functional groups (compound of formula I), compounds containing compounds to be linked together (compound of formula II) and compounds having a reactive functional group/a compound to be linked (compound of formula IV), (2) an antibody-drug conjugate (compound of formula III), wherein the antibody is covalently attached by a linker to one or more drugs, (3) pharmaceutical compositions comprising compounds of Formula (II) or Formula (III), (4) treatment/diagnosis of disease comprising compounds of Formula (II) or Formula (III), and (5) methods of preparing an ADC of Formula III.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 15, 2021
    Applicant: Ontario Institute for Cancer Research (OICR)
    Inventors: Rima Al-awar, Ahmed Mamai
  • Patent number: 10962545
    Abstract: The present invention relates to methods, kits, and compositions for detecting and/or diagnosing metastatic potential of cancer cells or for evaluating prognosis in a patient with cancer by detection of the protein expression level of an HLA class I molecule and/or the copy number variation of a polynucleotide encoding the HLA class I molecule. The present invention also relates to the use of the protein expression level of an HLA class I molecule and/or the copy number variation of a polynucleotide encoding the HLA class I molecule as a prognosis biomarker and metastasis predictive biomarker of cancer.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: March 30, 2021
    Assignees: BGI TECH SOLUTIONS CO., LTD, BEIJING INSTITUTE FOR CANCER RESEARCH
    Inventors: Rui Xing, Youyong Lu, Zhibo Gao, Wenmei Li, Jiantao Cui, Lin Li, Longyun Chen
  • Patent number: 10947303
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 1 (TGF-?1) are provided, particularly recognizing human and mouse TGF-?1 and not recognizing or binding TGF-?2 or TGF-?3. Particular antibodies are provided which specifically recognize and neutralize TGF-?1. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?1, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?1 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof. Antibodies of this type are exemplified by the novel antibodies hereof, including antibody 13A1, whose sequences are provided herein.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: March 16, 2021
    Assignee: LUDWIG INSTITUTE FOR CANCER RESEARCH, LTD.
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Thierry Boon
  • Patent number: 10934271
    Abstract: Described herein are amorphous and crystalline forms of the androgen receptor modulator 4-[7-(6-cyano-5-trifluoromethylpyridin-3-yl)-8-oxo-6-thioxo-5,7-diazaspiro[3.4]oct-5-yl]-2-fluoro-N-methylbenzamide. Also described are pharmaceutical compositions suitable for administration to a mammal that include the androgen receptor modulator, and methods of using the androgen receptor modulator, alone and in combination with other compounds, for treating diseases or conditions that are associated with androgen receptor activity.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: March 2, 2021
    Assignees: Aragon Pharmaceuticals, Inc., Sloan-Kettering Institute For Cancer Research
    Inventors: Anna Dihas, Mark R. Herbert, Ouathek Ouerfelli, Nicholas D. Smith
  • Publication number: 20210053978
    Abstract: The present application relates to compounds of Formula (I) or pharmaceutically acceptable salts, solvates and/or prodrugs thereof, to compositions comprising these compounds or pharmaceutically acceptable salts, solvates and/or prodrugs thereof, and various uses in the treatment of diseases, disorders or conditions that are treatable by inhibiting interactions with BCL6 BTB, such as cancer.
    Type: Application
    Filed: December 21, 2018
    Publication date: February 25, 2021
    Applicant: Ontario Institute for Cancer Research (OICR)
    Inventors: Rima Al-awar, Methvin Isaac, Anh My Chau, Ahmed Mamai, Iain Watson, Gennady Poda, Pandiaraju Subramanian, Brian Wilson, David Uehling
  • Patent number: 10919929
    Abstract: The present invention encompasses the recognition that reproducible and detectable changes in the level and or activity of Glucocorticoid Receptor (GR) are associated with incidence and/or risk of Castration Resistant Prostate Cancer (CRPC) and/or doubly resistant prostate cancer, specifically in individuals having prostate cancer and on antiandrogen therapy, and provides for the use of GR inhibitors to treat and/or reduce risk of CRPC and/or doubly resistant prostate cancer. In some embodiments, GR inhibitors also have Androgen Receptor (AR) inhibitory activity or are administered in conjunction with AR inhibitors. The present invention also provides technologies for identification and/or characterization of agents to treat and/or reduce risk of CRPC and/or doubly resistant prostate cancer; in some embodiments such agents alter level and/or activity of a GR. In some embodiments, provided agents show effects on a GR's activity of regulating transcription of one or more target genes.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: February 16, 2021
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventors: Vivek Arora, Charles L. Sawyers, Michael J. Evans, Darren R. Veach
  • Patent number: 10912831
    Abstract: The instant disclosure provides antibodies that specifically bind to CTLA-4 (e.g., human CTLA-4) and antagonize CTLA-4 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: February 9, 2021
    Assignees: AGENUS INC., LUDWIG INSTITUTE FOR CANCER RESEARCH LTD, MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Marc van Dijk, Cornelia Anne Mundt, Gerd Ritter, David Schaer, Jedd David Wolchok, Taha Merghoub, Nicholas Stuart Wilson, David Adam Savitsky, Mark Arthur Findeis, Dennis John Underwood, Jean-Marie Cuillerot, Igor Proscurshim, Olga Shebanova
  • Patent number: 10910084
    Abstract: The present invention relates to a method for predicting the response of a structure, or a group of structures and/or a network profile, to a perturbation, in particular a perturbation caused by an agent or a combination of agents through modeling, optimizing, parameterizing, testing and/or validating of a dynamic network or of network perturbations.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: February 2, 2021
    Assignees: Albert-Ludwigs-Universität Freiburg, Northern Institute for Cancer Research
    Inventors: Kathrin Thedieck, Annika Sonntag, Daryl Shanley, Piero Dalle Pezze
  • Patent number: 10888564
    Abstract: The disclosure generally relates to compounds of formulas (I) and (II)7 including compositions and methods for treating human immunodeficiency virus (HIV) infection. The disclosure provides novel inhibitors of HIV-1 integrase, pharmaceutical compositions containing such compounds, and methods for using these compounds in the treatment of HIV infection.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: January 12, 2021
    Assignee: Institute for Cancer Research
    Inventors: Mark D. Andrake, Anna Marie Skalka, George W. Merkel
  • Patent number: 10885679
    Abstract: A method of producing a magnetic resonance (MR) image of a region of interest is provided. The method includes the steps of: acquiring an initial MR image of the region of interest, the initial MR image mapping values of an MR-sensitive, physical property at positions over the region; determining a corresponding map of the estimated uncertainties in the values of the MR-sensitive, physical property over the region; and calculating a weighted MR image of the region, the weighted MR image mapping values of a function which combines, at each position of the initial image, the respective value of the MR-sensitive, physical property and the respective estimated uncertainty, the function applying a higher weighting to positions with relatively low estimated uncertainties than to positions with relatively high estimated uncertainties.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: January 5, 2021
    Assignees: The Institute of Cancer Research: Royal Cancer Hospital, Royal Marsden NHS Foundation Trust
    Inventors: Matthew Blackledge, David Collins, Martin Leach
  • Publication number: 20200397916
    Abstract: The present application is directed to compounds of Formula (I)-(VI): (I), (II), (III), (IV), (V) (VI), (VII) and (VIII), compositions comprising these compounds and their uses, for example as medicaments and/or diagnostics.
    Type: Application
    Filed: December 6, 2018
    Publication date: December 24, 2020
    Applicant: Ontario Institute for Cancer Research (OICR)
    Inventors: Rima Al-Awar, Andrew Zhang, Ahmed Mamai
  • Patent number: 10870640
    Abstract: Prodigiosin analogs which reactivate the p53 pathway are provided, as well as compositions of these compounds, and methods for reactivation of the p53 pathway using these compounds are provided. The prodigiosin analogs may be used to treat cancer in which p53 mutation plays a role, including prostate cancer, breast cancer, kidney cancer, ovarian cancer, lymphoma, leukemia, and glioblastoma, among others.
    Type: Grant
    Filed: April 27, 2019
    Date of Patent: December 22, 2020
    Assignee: Institute For Cancer Research
    Inventors: Wafik S. El-Deiry, Xiaobing Tian
  • Patent number: 10865379
    Abstract: The present invention relates to adenovirus E4ORF1 gene and to endothelial cells engineered to express the E4ORF1 gene. The present invention also relates to uses of the E4ORF1 gene, and cells expressing the E4ORF1 gene, and to compositions comprising the E4ORF1 gene, or comprising cells expressing the E4ORF1 gene.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: December 15, 2020
    Assignees: Cornell Research Foundation, Inc., Sloan-Kettering Institute for Cancer Research
    Inventors: Shahin Rafii, Fan Zhang, Marco Seandel
  • Patent number: 10844436
    Abstract: The present invention is directed to methods of prognosing, treating, or managing treatment of cancer in a subject. These methods involve selecting a subject having cancer, obtaining, from the selected subject, a sample containing exosomes, recovering the exosomes from the sample, and isolating the double-stranded DNA from within the exosomes. The isolated double-stranded DNA is then used to detect the presence or absence of one or more genetic mutations associated with cancer, quantify the amount of isolated double-stranded DNA from the recovered exosomes in the sample, detect the methylation status of the isolated double-stranded DNA, or quantify the amount isolated double-stranded DNA able to enter a recipient cell. The prognosing, treating, or managing treatment is carried out based on this information.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: November 24, 2020
    Assignees: CORNELL UNIVERSITY, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH
    Inventors: David C. Lyden, Hector Peinado Selgas, Haiying Zhang, Basant Kumar Thakur, Annette Becker, Jacqueline Bromberg
  • Patent number: 10836830
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: November 17, 2020
    Assignees: AGENUS INC., MEMORIAL SLOAN-KETTERING CANCER CENTER, LUDWIG INSTITUTE FOR CANCER RESEARCH LTD.
    Inventors: Nicholas S. Wilson, Jeremy D. Waight, Gerd Ritter, David Schaer, Daniel Hirschhorn-Cymerman, Taha Merghoub, Ekaterina V. Breous-Nystrom, Volker Seibert, Takemasa Tsuji, Olivier Léger, Dennis J. Underwood, Marc Van Dijk
  • Patent number: 10829559
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 10, 2020
    Assignees: Agenus Inc., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd.
    Inventors: Volker Seibert, Olivier Léger, Marc Van Dijk, Taha Merghoub, David Schaer, Gerd Ritter, Takemasa Tsuji