Patents Assigned to Instituto Mexicano del Petroleo
  • Publication number: 20100224535
    Abstract: A supported carbon having high surface area, high pore volume containing (i) molybdenum (ii) a metal of non noble Group VIII, (iii) phosphorous, is used for hydrometallization of heavy crude oil and residue. The catalyst contains about 6 to 15 wt % molybdenum as MoO3, about 1 to 6 wt % cobalt or nickel as CoO or NiO and phosphorus as phosphorous oxide. One characteristic of the catalyst is the portion of pores having pore diameter in the range of 200 to 2000 Angstrom of 20 percent or more. The catalyst prepared by chelating agent has higher hydrodesulfurization activity assuming that more dispersed active metals are present on this catalyst. Long run activity studies show that catalyst having only molybdenum supported on activated carbon has good stability with time-on-stream and very high metal retention capacity.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 9, 2010
    Applicants: INSTITUTO MEXICANO DEL PETROLEO, TOYO ENGINEERING CORPORATION
    Inventors: Samir Kumar Maity, Jorge Ancheyta Juárez, Fernando Alonso Martínez, Hidetsugu Fukuyama, Satoshi Terai, Masayuki Uchida
  • Publication number: 20100193401
    Abstract: The present invention relates to improving heavy crude oil, and extra through a scheme considering the use of ionic liquids catalysts based on Mo and Fe catalyst is highly miscible with crude oil and are in the homogeneous phase crude oil. Furthermore, this invention relates to improving heavy crude in two stages, the first ionic liquid catalyst, and the second supported catalyst. The API gravity crude is increased from 12.5 to 19 points in the first stage and viscosities up to 5600-1600 decreased from 60-40 cSt certain to 37.8 ° C. While in the second stage, you get an upgraded crude oil with 32.9 ° API, viscosity of 4.0 cSt, reduction in total sulphur content of 0.85 wt % nitrogen and 0295 ppm by weight, respectively. As a considerable reduction of asphaltenes from 28.65 to 3.7% weight.
    Type: Application
    Filed: July 7, 2008
    Publication date: August 5, 2010
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Ruben Nares Ochoa, Persi Schacht Hernandez, Maria del Carmen Cabrera Reyes, Marco Antonio Ramirez Garnica, Fernando Castrejon Vacio, Ricardo Jesus Ramirez Lopez
  • Patent number: 7740828
    Abstract: Multimetallic anionic clays (MACs) are prepared using economical raw materials or reactants and a procedure for obtaining a series of multimetallic mixed oxides derived from the thermal decomposition of the MACs which comprises: (1) dissolving water-soluble bimetallic and/or trimetallic sources in water, (2) dispersing and homogenizing separate water-insoluble divalent and/or trivalent metal precursors with a high-speed stirrer in order to obtain small and reactive particles; depending on the nature of the water-insoluble divalent and/or trivalent metal precursors, this process can be adjusted to a desired pH, (3) adding the suspension obtained in (2) to solution (1) with the reaction medium still dispersed to facilitate solid particle's reduction/dissociation, and (4) afterwards the slurry is aged for several hours and finally dried. This process enables raw materials or reactants to be easily handled, and eliminates unit operations involving product washing and/or purification steps.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: June 22, 2010
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Jaime Sanchez-Valente, Esteban Lopez-Salinas, Manuel Sanchez-Cantu
  • Publication number: 20100140141
    Abstract: The present invention relates to demulsifying and dehydrating formulations of heavy crude oil based block copolymers amine bifunctionalized with low polydispersities. These formulations can contain solvents whose boiling point is in the range from 35 to 200° C., preferably: dichloromethane, chloroform, toluene, xylenes, turbosine, naphtha or mixtures thereof.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 10, 2010
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Gabriel Cendejas Santana, Eugenio Alejandro Flores Oropeza, Laura Verónica Castro Sotelo, Aristeo Estrada Buendia, Marcelo Lozada y Cassou, Flavio Salvador Vázquez Moreno
  • Publication number: 20100116713
    Abstract: Heavy crude oil residue and vacuum residue is upgraded using an ionic liquid catalyst formulated with metals of Group VIB and VIIIB of the periodic table, which catalyst is highly miscible in the hydrocarbon phase. The combination of different metals and acidity from the protons that make up the ionic liquid breaks the links C—S, C—N and C—O of the resins and asphaltenes and increases API gravity, decreases viscosity, removes sulfur and nitrogen compounds, and results in conversion of 50 to 70% of the waste oil and heavy crude oil into lighter distillates.
    Type: Application
    Filed: May 11, 2009
    Publication date: May 13, 2010
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Felipe de Jesús Ortega García, Persi Schacht Hernández, Marco Antonio Ramírez Garnica, Natalya Victorovna Likhanova, Joaquín Rodolfo Hernández Pérez, Ricardo Jesús Ramírez López
  • Publication number: 20100107478
    Abstract: The present invention relates to oxazolidines derived from polyalkyl or polyalkenyl N-hydroxyalkyl succinimides, the obtainment process thereof, and their use to prevent and control the formation of deposits in internal combustion engines, primarily in formulations of additives to be applied to hydrocarbon fuels.
    Type: Application
    Filed: April 15, 2008
    Publication date: May 6, 2010
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Luis Silvestre Zamudio Rivera, Eugenio Alejandro Flores Oropeza, Marcelo Lozada y Cassou, Hiram Issac Beltran Conde, Eduardo Buenrostro Gonzalez, Youri Douda, Mario Alberto Guzman Vega, Adela Morales Pacheco, Violeta Yasmin Mena Cervantes, Raul Hernandez Altamirano
  • Publication number: 20100081566
    Abstract: Multimetallic anionic clays (MACs) are prepared using economical raw materials or reactants and a procedure for obtaining a series of multimetallic mixed oxides derived from the thermal decomposition of the MACs which comprises: (1) dissolving water-soluble bimetallic and/or trimetallic sources in water, (2) dispersing and homogenizing separate water-insoluble divalent and/or trivalent metal precursors with a high-speed stirrer in order to obtain small and reactive particles; depending on the nature of the water-insoluble divalent and/or trivalent metal precursors, this process can be adjusted to a desired pH, (3) adding the suspension obtained in (2) to solution (1) with the reaction medium still dispersed to facilitate solid particle's reduction/dissociation, and (4) afterwards the slurry is aged for several hours and finally dried. This process enables raw materials or reactants to be easily handled, and eliminates unit operations involving product washing and/or purification steps.
    Type: Application
    Filed: December 4, 2009
    Publication date: April 1, 2010
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Jaime Sanchez-Valente, Esteban Lopez-Salinas, Manuel Sanchez-Cantu
  • Publication number: 20100069233
    Abstract: Nanomaterials of the JT phase of the titanium oxide TiO2-x, where 0?x?1 having as a building block a crystalline structure with an orthorhombic symmetry and described by at least one of the space groups 59 Pmmn, 63 Amma, 71 Immm or 63 Bmmb. These nanomaterials are in the form of nanofibers, nanowires, nanorods, nanoscrolls and/or nanotubes. The nanomaterials are obtained from a hydrogen titanate and/or a mixed sodium and hydrogen titanate precursor compound that is isostructural to the JT crystalline structure. The titanates are the hydrogenated, the protonated, the hydrated and/or the alkalinized phases of the JT crystalline phase that are obtained from titanium compounds such as titanium oxide with an anatase crystalline structure, amorphous titanium oxide, and titanium oxide with a rutile crystalline structure, and/or directly from the rutile mineral and/or from ilmenite.
    Type: Application
    Filed: November 23, 2009
    Publication date: March 18, 2010
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Jose Antonio Toledo Antonio, Carlos Angeles Chavez, Maria Antonia Cortes Jacome, Fernando Alvarez Ramirez, Yosadara Ruiz Morales, Gerardo Ferrat Torres, Luis Francisco Flores Ortiz, Esteban Lopez Salinas, Marcelo Lozada y Cassou
  • Publication number: 20100051509
    Abstract: Ionic liquids of the general formula C+A? where C+ represents an organic cation, specifically, but not limited to the imidazolium, pyridinium, isoquinolinium, ammonium types, which have aliphatic and aromatic substituents, while A? represents a carboxylate, aromatic and aliphatic anion. The ionic liquids are synthesized under conventional heating or microwave irradiation This invention is also related to the application of ionic liquids to remove sulfur compounds of naphthas through a liquid-liquid extraction and the recovery and reuse of ionic liquids by the application of heat, reduced pressure and washing with solvents.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 4, 2010
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Rafael Martinez Palou, Natalya Victorovna Likhanova, Eugenio Alejandro Flores Oropeza, Diego Javier Guzman Lucero
  • Publication number: 20100025303
    Abstract: The present invention is related with the application of an adsorbent material of microporous carbon (MCA), prepared from the direct pyrolysis of copolymers generically known as Saran, in adsorption processes to reduce the benzene content in naphtha boiling range hydrocarbon streams, between 27 and 191° C., in which is preferable to perform a first separation by distillation of the C6's fraction, and a further separation of Benzene by adsorption through an adsorbent material bed, obtaining the fraction of C6's free of Benzene and an adsorbent with Benzene, which is further regenerated by pressure or temperature swing desorption or by displacement using a desorbent such as an inert gas at high temperature or by passing a desorbent which after the process, the desorbent and Benzene are separated by distillation. The fraction of C6's free of Benzene is reintegrated to the hydrocarbon stream and providing a gasoline with a Benzene content less than 1 volume %.
    Type: Application
    Filed: November 23, 2007
    Publication date: February 4, 2010
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Georgina Cecilia Laredo Sanchez, J. Jesus Castillo Munguia, Fidencio Hernandez Perez, Ricardo Saint Martin Castanon, Maria del Carmen Martinez Guerrero, Federico Jesus Jimenez Cruz, Obet Marroquin De La Rosa, Jose Luis Cano Dominguez
  • Patent number: 7651604
    Abstract: Two-stage low pressure catalytic hydrotreatment of heavy petroleum hydrocarbons having a high content of contaminants (metals and asphaltenes), is conducted under operating conditions with low-pressure, in a fixed bed or ebullated bed reactor to limit the formation of sediments and sludge in the product and obtain a hydrotreated hydrocarbon of improved properties, with levels of contaminants, API gravity and distillates within the ranges commonly reported in the feedstocks typical to refining schemes. A hydrotreatment catalyst, whose principal effect is the hydrodemetallization and the hydrocracking of asphaltenes of the heavy hydrocarbons of petroleum is used in the first stage, and the second reaction stage employs a hydrotreatment catalyst for a deeper effect of hydrodesulfurization of the heavy petroleum hydrocarbon whose content of total sulfur is reduced to a level required for its treatment in the conventional refining process or for its sale as a hydrocarbon of petroleum with improved properties.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: January 26, 2010
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Jorge Ancheyta Juárez, Gerardo Betancourt Rivera, Gustavo Jesús Marroquín Sánchez, Guillermo Centeno Nolasco, José Antonio Domingo Muñoz Moya, Frenando Alonso Martínez
  • Patent number: 7645439
    Abstract: Nanomaterials of the JT phase of the titanium oxide TiO2-x, where 0?x?1 having as a building block a crystalline structure with an orthorhombic symmetry and described by at least one of the space groups 59 Pmmn, 63 Amma, 71 Immm or 63 Bmmb. These nanomaterials are in the form of nanofibers, nanowires, nanorods, nanoscrolls and/or nanotubes. The nanomaterials are obtained from a hydrogen titanate and/or a mixed sodium and hydrogen titanate precursor compound that is isostructural to the JT crystalline structure. The titanates are the hydrogenated, the protonated, the hydrated and/or the alkalinized phases of the JT crystalline phase that are obtained from titanium compounds such as titanium oxide with an anatase crystalline structure, amorphous titanium oxide, and titanium oxide with a rutile crystalline structure, and/or directly from the rutile mineral and/or from ilmenite.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: January 12, 2010
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Antonio Toledo Antonio, Carlos Angeles Chávez, María Antonia Cortés Jacome, Fernando Alvarez Ramírez, Yosadara Ruiz Morales, Gerardo Ferrat Torres, Luis Francisco Flores Ortiz, Esteban López Salinas, Marcelo Lozada y Cassou
  • Publication number: 20090288992
    Abstract: The present invention relates to an ionic liquid compound of general formula C+A?, where C+ represents an organic cation such as alkyl-pyridinium, di-alkyl imidazolium and tri-alkyl imidazolium; and A? is an anion of halides of iron (III), such as, for example, FeCl4? and to a method of producing the ionic liquid compound by heating the reactants using microwave energy. The ionic liquids can be used to desulfurize hydrocarbon mixtures by a liquid-liquid extraction.
    Type: Application
    Filed: May 26, 2009
    Publication date: November 26, 2009
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Natalya Victorovna Likhanova, Rafael Martinez Palou, Jorge Froylan Palomeque Santiago
  • Patent number: 7496450
    Abstract: The invention relates to an image-reconstruction technique which is used to view multiphase flows using electrical capacitance tomography (ECT), which is based on non-linear heuristic global optimization methods involving simulated annealing and genetic algorithms. The inventive method consists in obtaining electrical capacitance data which are measured between electrodes positioned on the outer surface of pipeline, well or tank (electrically-insulating) containing fluids. The aforementioned data are dependent on the distribution of the fluids inside the pipeline, well or tank. Moreover, the data are processed in order to reconstruct an image of the spatial distribution of the relative electrical permittivity (also known as the dielectric constant) inside the tube, well or tank, which reflects the distribution of the different phases present in the flow.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: February 24, 2009
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Carlos Ortiz Alemán, Roland Martin, José Carlos Gamio Roffé
  • Publication number: 20080280754
    Abstract: The invention relates to a method of preparing a catalytic composition comprising at least one non-noble metal from group VIII and at least one metal from group VIB of the periodic table. The invention also relates to the catalytic composition thus produced, which has a high specific activity in reactions involving the hydroprocessing of light and intermediate fractions, preferably in reactions involving the hydrotreatment of hydrocarbon streams, including hydrodesulphurisation (HDS), hydrodenitrogenation (HDN) and hydro-dearomatisation (HDA).
    Type: Application
    Filed: August 22, 2006
    Publication date: November 13, 2008
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Jose Antonio Toledo Antonio, Miguel Perez Luna, Maria Antonia Cortes Jacome, Jose Escobar Aguilar, Maria de Lourdes Mosqueira Mondragon, Carlos Angeles Chavez, Esteban Lopez Salinas, Victor Perez Moreno, Gerardo Ferrat Torres, Rodolfo Juventino Mora Vallejo, Marcelo Lozada y Cassou
  • Publication number: 20080274034
    Abstract: Multimetallic anionic clays (MACs) are prepared using economical raw materials or reactants and a procedure for obtaining a series of multimetallic mixed oxides derived from the thermal decomposition of the MACs which comprises: (1) dissolving water-soluble bimetallic and/or trimetallic sources in water, (2) dispersing and homogenizing separate water-insoluble divalent and/or trivalent metal precursors with a high-speed stirrer in order to obtain small and reactive particles; depending on the nature of the water-insoluble divalent and/or trivalent metal precursors, this process can be adjusted to a desired pH, (3) adding the suspension obtained in (2) to solution (1) with the reaction medium still dispersed to facilitate solid particle's reduction/dissociation, and (4) afterwards the slurry is aged for several hours and finally dried. This process enables raw materials or reactants to be easily handled, and eliminates unit operations involving product washing and/or purification steps.
    Type: Application
    Filed: October 29, 2007
    Publication date: November 6, 2008
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Jaime Sanchez-Valente, Esteban Lopez-Salinas, Manuel Sanchez-Cantu
  • Patent number: 7416655
    Abstract: An adsorbent composition comprising a nanostructured titanium oxide material of the formula TiO2-, where 0?×?1 with nanotubular and/or nanofibrilar morphology, high oxygen deficiency, having an orthorhombic JT crystalline phase described by at least one of the space groups 59 Pmmn, 63 Amma, 71Immm or 63 Bmmb, and comprising between 0 and 20 weight percent of a transition metal oxide is used for the selective adsorption of nitrogen compounds and/or sulfur compounds from light and intermediate petroleum fractions.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: August 26, 2008
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Antonio Toledo Antonio, María Antonia Cortés Jacome, Gerardo Ferrat Torres, Carlos Angeles Chávez, Luis Francisco Flores Ortiz, Maria de Lourdes Araceli Mosqueira Mondragon, Esteban López Salinas, Jose Escobar Aguilar, Rodolfo Juventino Mora Vallejo, Fernando Alvarez Ramírez, Yosadara Ruiz Morales, Marcelo Lozada y Cassou
  • Patent number: 7005118
    Abstract: This invention relates to a new composition of high surface area materials suitable for adsorption of both organic and inorganic species and as a component of catalysts useful for the transformation of hydrocarbons into a variety of products. These materials are composed by mesoporous spherical particles that have large sorption capacity, as demonstrated by the uptake of nitrogen at 78 K having a diameter of 0.1 to 1.0 microns, a mean pore diameter of 2.0 nm to 4.0 nm, a surface area of 750 to 1050 m2/g and a mean pore volume of 0.75 to 1.0 ml/g. The typical inner structure is composed of nanotubes having diameters around 3.5 nm aligned along the radius of the spherical particles, with surface areas around 1,000 m2/g, depending on the surfactant (C16H33N(CH3)3Br) to co-solvent (CnH2n+1OH, where n=2,3, or CH3COCH3) molar ratio.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: February 28, 2006
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Eduardo Terres Rojas, Jose Manuel Dominguez Esquivel
  • Publication number: 20040052714
    Abstract: This invention relates to a new composition of high surface area materials suitable for adsorption of both organic and inorganic species and as a component of catalysts useful for the transformation of hydrocarbons into a variety of products. These materials are composed by mesoporous spherical particles that have large sorption capacity, as demonstrated by the uptake of nitrogen at 78 K having a diameter of 0.1 to 1.0 microns, a mean pore diameter of 2.0 nm to 4.0 nm, a surface area of 750 to 1050 m2/g and a mean pore volume of 0.75 to 1.0 ml/g. The typical inner structure is composed of nanotubes having diameters around 3.5 nm aligned along the radius of the spherical particles, with surface areas around 1,000 m2/g, depending on the surfactant (C16H33N(CH3)3 Br) to co-solvent (CnH2n+1OH, where n=2,3, or CH3COCH3) molar ratio.
    Type: Application
    Filed: July 17, 2003
    Publication date: March 18, 2004
    Applicant: Instituto Mexicano del Petroleo
    Inventors: Eduardo Terres Rojas, Jose Manuel Dominguez Esquivel
  • Patent number: 6689708
    Abstract: A process for preparing a reforming catalyst comprises incorporating a group IA alkali metal from an aqueous alkaline solution into a zeolitic material by means of ion exchange to form an alkali metal-modified zeolitic support material, which is dried, calcined and combined with an inorganic oxide. The combination is dried and calcined to form a stable inorganic oxide/zeolitic catalyst support which is impregnated with a Group VIII metal by ionic exchange to form an impregnated inorganic oxide/zeolitic catalyst support which is dried, calcined and reduced from a naphtha reforming catalyst.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: February 10, 2004
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Jesus Manuel Bautista Barrera, Ma. de Lourdes Ramirez de Lara, Rene Zarate Ramos, Oscar H. Bermudez Mendizabal, Gabriela Espinosa Santamaria