Patents Assigned to Integral Technologies, Inc.
  • Publication number: 20040174318
    Abstract: Low cost moldable antennas and methods of forming the antennas are described. Elements of the antennas are conductive loaded resin-based material having a conducting wire center. The conducting wire center can be single strand, multi-strand, insulated, or non-insulated wire. The conductive loaded resin-based material comprises micron conductor fibers, micron conductor powders, or in combination thereof homogenized within a base resin host wherein the ratio of the weight of the conductor fibers, conductor powders, or combination thereof to the weight of the base resin host is typically between about 0.20 and 0.40. The micron conductive fibers or powders can be stainless steel, nickel, copper, silver, carbon, graphite, or plated particles or fibers, or the like. The conducting metal wire can be copper, nickel, stainless steel, silver, or the like.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 9, 2004
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20040174301
    Abstract: A multi-segmented planar antenna with a built in ground plane and method of forming the antenna are described. The antenna elements are formed on a layer of first dielectric having conducting material on both the first and second sides of the layer of first dielectric, such as a printed circuit board. Antenna elements are formed on both sides of the layer of first dielectric using selective etching of the conducting material. Two antenna elements are generally rectangular separated by a narrow gap and electrically connected by two shorting strips across the gap. Two antenna elements are long and narrow wherein the length of each is an integral multiple of a quarter wavelength of the operating frequencies of the antenna. A layer of second dielectric is placed between the layer of first dielectric having the antenna elements and a ground plane. The antenna can be fully encapsulated in a plastic encapsulation material.
    Type: Application
    Filed: January 29, 2003
    Publication date: September 9, 2004
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20040174651
    Abstract: Heat sinks, heat pipes, and other thermal management devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 9, 2004
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20040164923
    Abstract: A low cost moldable transformer or trans-inductor core, referred to in this description as a transductor. Elements of the transductor core are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductor fibers, micron conductor powders, or in combination thereof homogenized within a base resin host wherein the ratio of the weight of the conductor fibers, conductor powders, or combination thereof to the weight of the base resin host can be between about 0.20 and 0.40. The micron conductive fibers or powders, can be of stainless steel, nickel, copper, silver, carbon, graphite, plated particles, plated fibers, or the like. Transductors can be formed using methods such as injection molding, over-molding, thermo-set, protrusion, extrusion, compression, or the like, in combination with a large number of production or wire wrapping techniques to achieve desired electrical characteristics.
    Type: Application
    Filed: February 19, 2004
    Publication date: August 26, 2004
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20040160377
    Abstract: Low cost antennas and electromagnetic absorbing parts formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises conductive fibers, conductive powders, or in combination thereof in a resin base host wherein the ratio of the weight of the conductor fibers, conductor powders, or combination of conductor fibers and conductor powders to the weight of the base resin host is between about 0.20 and 0.40. The conductive fibers or conductive powders can be stainless steel, nickel, copper, silver, carbon, graphite, plated fibers or particles, or the like. The antenna elements can be formed using methods such as injection molding or extrusion. Virtually any antenna, ground planes, or shielding packages fabricated by conventional means of metal can be fabricated using the conductive loaded resin-based materials.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 19, 2004
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 6741221
    Abstract: Low cost antennas formed of conductive loaded resin-based materials. The conductive loaded resin-based materials are resins filled with conductive materials to provide a material which is a conductor rather than an insulator or body. The conductive materials comprise a resin-based structural material loaded with micron conductive powders or micron conductive fibers to provide a composite which is a conductor rather than an insulator. Virtually any antenna fabricated by conventional means such as wire, strip-line, printed circuit boards, or the like can be fabricated using the conductive loaded resin-based materials. The antennas can be formed using methods such as injection molding, overmolding, or extrusion.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: May 25, 2004
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas A. Aisenbrey
  • Patent number: 6717550
    Abstract: Antennas and methods of forming the antennas having a very low profile and a built in ground plane are described. The antenna elements are formed of conducting material on a layer of dielectric material, such as an integrated circuit board. The antenna elements are mounted on a ground plane having a number of shorting elements between one of the antenna elements and the ground plane. In some embodiments the antenna elements are on a single side of the layer of dielectric material. In other embodiments the antenna elements are formed on both the top and bottom surfaces of the layer of dielectric material. The self contained ground plane makes the antenna performance independent of proximity to conducting or non conducting surfaces.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: April 6, 2004
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20040051666
    Abstract: Low cost antennas formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises conductor fibers or conductor particles in a resin or plastic host wherein the ratio of the weight of the conductor fibers or conductor particles to the weight of the resin or plastic host is between about 0.20 and 0.40. The conductive fibers can be stainless steel, nickel, copper, silver, or the like. The antenna elements can be formed using methods such as injection molding or extrusion. Virtually any antenna fabricated by conventional means such as wire, strip-line, printed circuit boards, or the like can be fabricated using the conductive loaded resin-based materials. The conductive loaded resin-based material used to form the antenna elements can be in the form of a thin flexible woven fabric which can readily cut to the desired shape.
    Type: Application
    Filed: December 4, 2002
    Publication date: March 18, 2004
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20020109634
    Abstract: Low cost antennas formed of conductive loaded resin-based materials. The conductive loaded resin-based materials are resins filled with conductive materials to provide a material which is a conductor rather than an insulator or body. The conductive materials comprise a resin-based structural material loaded with micron conductive powders or micron conductive fibers to provide a composite which is a conductor rather than an insulator. Virtually any antenna fabricated by conventional means such as wire, strip-line, printed circuit boards, or the like can be fabricated using the conductive loaded resin-based materials. The antennas can be formed using methods such as injection molding, overmolding, or extrusion.
    Type: Application
    Filed: February 14, 2002
    Publication date: August 15, 2002
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas A. Aisenbrey
  • Patent number: 6329950
    Abstract: An antenna is formed from two antenna elements, a first antenna element and a second antenna element, wherein the second antenna element surrounds the first antenna element. A shorting element electrically connects the inner antenna element to the outer antenna element. An insulating gap insulates the inner antenna element from the outer antenna element except for the region where the shorting element connects the two antenna elements. A coaxial cable connects the antenna to a transceiver. The inner conductor of the coaxial cable is connected to the first antenna element and the outer conductor of the coaxial cable is connected to the second antenna element. The length of the outer perimeter of the first antenna element is equal to an integral multiple of one quarter of the wavelength of the center frequency of the antenna. The inner antenna element can be rectangular, square, circular, oval, or any similar shape. More than one antenna can be formed on a single layer of dielectric material.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: December 11, 2001
    Assignee: Integral Technologies, Inc.
    Inventors: Daniel W Harrell, Pamela R Wallace
  • Patent number: 6320548
    Abstract: An antenna that can be used as an active receiving antenna and a transmitting antenna is formed by forming dual disk antenna elements. The dual disk antenna elements are formed by etching a pattern in a layer of conducting material, such as copper, formed on a substrate of dielectric material. One of the disks acts as the active antenna element and the other disk acts as a counterpoise antenna element. In one embodiment a RF amplifier chip is used to form an active receiving antenna. In another embodiment the RF amplifier chip is removed and the antenna can be used either as a receiving antenna or a transmitting antenna. In another embodiment a RF amplifier chip is used with an electronic switch to include the RF amplifier chip when the antenna is used as a receiving antenna and to switch the RF chip out of the circuit when the antenna is used as a transmitting antenna.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: November 20, 2001
    Assignee: Integral Technologies, Inc.
    Inventors: Daniel W. Harrell, Pamela R. Wallace