Patents Assigned to Integran Technologies Inc.
  • Patent number: 10286120
    Abstract: In-vivo biodegradable medical implants, containing at least in part at least partially fine-grained metallic materials provide a strong, tough, stiff and lightweight implant. The in-vivo biodegradable implants are used in a number of stent applications, for fracture fixation, sutures and the like. The in-vivo biodegradable medical implants enable the reduction of implant size and weight and consequently result in reducing the release of implant degradation products into the body.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: May 14, 2019
    Assignee: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Klaus Tomantschger, Gino Palumbo, Diana Facchini
  • Patent number: 10060016
    Abstract: Polycrystalline materials are prepared by electrodeposition of a precursor material that is subsequently heat-treated to induce at least a threefold increase in the grain size of the material to yield a relatively high fraction of ‘special’ low ? grain boundaries and a randomized crystallographic texture. The precursor metallic material has sufficient purity and a fine-grained microstructure (e.g., an average grain size of 4 nm to 5 ?m). The resulting metallic material is suited to the fabrication of articles requiring high mechanical or physical isotropy and/or resistance to grain boundary-mediated deformation or degradation mechanisms.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: August 28, 2018
    Assignee: INTEGRAN TECHNOLOGIES INC.
    Inventors: Gino Palumbo, Iain Brooks, Klaus Tomantschger, Peter Lin, Karl Aust, Nandakumar Nagarajan, Francisco Gonzalez
  • Patent number: 9970120
    Abstract: A method for electrodepositing a coating/free-standing layer on a workpiece in an electrolytic cell includes moving the workpiece and an anode applicator tool having a consumable anode insert relative to each other; anodically dissolving a metal from the insert and cathodically depositing the metal on the workpiece; providing flow of electrolyte solution through the insert to ensure that greater than 90% of the anodic reaction is represented by dissolution of the metal; recirculating collected electrolyte solution exiting the electrolytic cell through the insert; applying an electric current to the electrolytic cell; maintaining a concentration of the anodically dissolved metal within ±25% of each Ampere-hour per liter of electroplating solution; and creating a cathodic electrodeposit on the workpiece which includes the anodically dissolved metal, the chemical composition of the deposit varying by less than 25% in the deposition direction over a selected thickness of up to 25 microns of the deposit.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: May 15, 2018
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Publication number: 20160208369
    Abstract: Polycrystalline materials are prepared by electrodeposition of a precursor material that is subsequently heat-treated to induce at least a threefold increase in the grain size of the material to yield a relatively high fraction of ‘special’ low ? grain boundaries and a randomized crystallographic texture. The precursor metallic material has sufficient purity and a fine-grained microstructure (e.g., an average grain size of 4 nm to 5 pm). The resulting metallic material is suited to the fabrication of articles requiring high mechanical or physical isotropy and/or resistance to grain boundary-mediated deformation or degradation mechanisms.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 21, 2016
    Applicant: INTEGRAN TECHNOLOGIES INC.
    Inventors: Gino PALUMBO, Iain BROOKS, Klaus TOMANTSCHGER, Peter LIN, Karl AUST, Nandakumar NAGARAJAN, Francisco GONZALEZ
  • Patent number: 9303322
    Abstract: Articles containing fine-grained and/or amorphous metallic coatings/layers on at least part of their exposed surfaces are imprinted with surface structures to raise the contact angle for water in the imprinted areas at room temperature by equal to or greater than 10°, when compared to the flat and smooth metallic material surface of the same composition.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: April 5, 2016
    Assignee: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini
  • Patent number: 9260790
    Abstract: Polycrystalline materials are prepared by electrodeposition of a precursor material that is subsequently heat-treated to induce at least a threefold increase in the grain size of the material to yield a relatively high fraction of ‘special’ low ? grain boundaries and a randomized crystallographic texture. The precursor metallic material has sufficient purity and a fine-grained microstructure (e.g., an average grain size of 4 nm to 5 ?m). The resulting metallic material is suited to the fabrication of articles requiring high mechanical or physical isotropy and/or resistance to grain boundary-mediated deformation or degradation mechanisms.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: February 16, 2016
    Assignee: INTEGRAN TECHNOLOGIES INC.
    Inventors: Gino Palumbo, Iain Brooks, Klaus Tomantschger, Peter Lin, Karl Aust, Nandakumar Nagarajan, Francisco Gonzalez
  • Publication number: 20160038653
    Abstract: In-vivo biodegradable medical implants, containing at least in part at least partially fine-grained metallic materials provide a strong, tough, stiff and lightweight implant. The in-vivo biodegradable implants are used in a number of stent applications, for fracture fixation, sutures and the like. The in-vivo biodegradable medical implants enable the reduction of implant size and weight and consequently result in reducing the release of implant degradation products into the body.
    Type: Application
    Filed: August 14, 2015
    Publication date: February 11, 2016
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Klaus TOMANTSCHGER, Gino PALUMBO, Diana FACCHINI
  • Patent number: 9249521
    Abstract: Anode applicators include consumable anodes, that can be operated in a non-stationary mode and are insensitive to orientation, are used in selective plating/brush electrodeposition of coatings or free-standing components. The flow-through dimensionally-stable, consumable anodes employed are perforated/porous to provide relatively unimpeded electrolyte flow and operate at low enough electrochemical potentials to provide for anodic metal/alloy dissolution avoiding undesired anodic reactions. The consumable anodes include consumable anode material(s) in high surface area to reduce the local anodic current density. During electroplating, sufficient electrolyte is pumped through the consumable anodes at sufficient flow rates to minimize concentration gradient and/or avoid the generation of chlorine and/or oxygen gas and/or undesired reaction such as the anodic oxidation of P-bearing ions in the electrolyte.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: February 2, 2016
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Patent number: 9119906
    Abstract: In-vivo biodegradable medical implants, containing at least in part at least partially fine-grained metallic materials that are strong, tough, stiff and lightweight, are disclosed The in-vivo biodegradable implants are used in a number of stent applications, for fracture fixation, sutures and the like. The in-vivo biodegradable medical implants enable the reduction of implant size and weight and consequently result in reducing the release of implant degradation products into the body.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: September 1, 2015
    Assignee: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Klaus Tomantschger, Gino Palumbo, Diana Facchini
  • Publication number: 20150111673
    Abstract: The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight sporting goods exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 23, 2015
    Applicant: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nasarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha, Diana Facchini, Jared Victor, Uwe Erb
  • Patent number: 9004240
    Abstract: Grain-refined and amorphous metallic material based friction liners for braking devices as used, e.g., in motor vehicles such as cars, trucks, motorcycles, as well as bicycles and other applications requiring, at least at times, decelerating rotating parts are disclosed. Friction liners can have isotropic or anisotropic properties and the friction surfaces can optionally be rendered hydrophobic.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 14, 2015
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Klaus Tomantschger
  • Patent number: 9005420
    Abstract: Variable property deposit, at least partially of fine-grained metallic material, optionally containing solid particulates dispersed therein, is disclosed. The electrodeposition conditions in a single plating cell are suitably adjusted to once or repeatedly vary at least one property in the deposit direction. In one embodiment denoted multidimension grading, property variation along the length and/or width of the deposit is also provided. Variable property metallic material deposits containing at least in part a fine-grained microstructure and variable property in the deposit direction and optionally multidimensionally, provide superior overall mechanical properties compared to monolithic fine-grained (average grain size: 2 nm-5 micron), entirely coarse-grained (average grain size: >20 micron) or entirely amorphous metallic material deposits.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 14, 2015
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Glenn Hibbard, Gino Palumbo, Iain Brooks, Jonathan McCrea, Fred Smith
  • Patent number: 8916248
    Abstract: Metal-coated polymer articles containing structural substantially porosity-free, fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein on polymer substrates, are disclosed. The substantially porosity-free metallic coatings/layers/patches are applied to polymer or polymer composite substrates to provide, enhance or restore vacuum/pressure integrity and fluid sealing functions. Due to the excellent adhesion between the metallic coating and the polymer article satisfactory thermal cycling performance is achieved. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, aerospace and automotive parts and other components exposed to thermal cycling and stress created by erosion and impact damage.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 23, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Jonathan McCrea, Francisco Gonzalez, Gino Palumbo, Klaus Tomantschger, Rich Emrich, Konstantinos Panagiotopoulos, Mary Pasquantonio, John Kratochwil, Herath Katugaha
  • Patent number: 8911878
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the CLTE of the metallic layer and the one of the substrate is mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 16, 2014
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha
  • Patent number: 8906515
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: December 9, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha, Diana Facchini, Jared J. Victor, Uwe Erb
  • Publication number: 20140255722
    Abstract: Corrosion resistant, grain-refined and/or amorphous Ni- and Cu-free Co-bearing coatings on polymer substrates for use in human contact applications, including industrial products, automotive products, medical surgical devices, and medical products, are disclosed.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: Integran Technologies Inc.
    Inventors: Nandakumar Nagarajan, Mioara Neacsu, Gino Palumbo, Klaus Tomantschger
  • Publication number: 20140242405
    Abstract: Grain-refined and amorphous metallic material based friction liners for braking devices as used, e.g., in motor vehicles such as cars, trucks, motorcycles, as well as bicycles and other applications requiring, at least at times, means for decelerating rotating parts are disclosed. Friction liners can have isotropic or anisotropic properties and the friction surfaces can optionally be rendered hydrophobic.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: Integran Technologies Inc.
    Inventors: Gino Palumbo, Klaus Tomantschger
  • Patent number: 8784713
    Abstract: Super-hydrophobic and self-cleaning articles produced by imprinting exposed surfaces with suitable fine-grained and/or amorphous metallic embossing dies to transfer a dual surface structure, including ultra-fine features less than or equal to 100 nm embedded in and overlaying a surface topography with macro-surface structures greater than or equal to 1 micron are disclosed.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 22, 2014
    Assignee: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini, Mioara Neacsu
  • Patent number: 8741392
    Abstract: A novel activation/etch method is disclosed for conductive polymer substrates and conductive polymer composite substrates to achieve good adhesion to subsequently applied coatings. The method in a preferred case involves anodically polarizing conductive polymers/polymer composites in aqueous etching solutions.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: June 3, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Jonathan McCrea, Konstantinos Panagiotopoulos, Herath Katugaha, Klaus Tomantschger
  • Patent number: 8691397
    Abstract: Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 8, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Diana Facchini, Francisco Gonzalez, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger