Abstract: The present invention relates to a circuit for varying bandwidth of transconductance-capacitor filter by controlling transconductance of a transconductance circuit, and a digital tuning circuit of transconductor-capacitor filter. A transconductor of an embodiment of the present invention comprises a first and second amplifying devices; a resistor; a first and second bias current sources; and transconductance varying circuit. A tuning circuit of another embodiment of the invention relates to a digital tuning circuit comprising a transconductor that outputs current proportional to input voltage and a varying capacitance that is connected with output node of transconductor and between grounds and varies its capacitance depending upon the level of control signal.
Abstract: The present invention relates to circuits having differential structure which uses complementary devices for processing single-ended signal. The single-ended differential circuit in accordance with the present invention, comprises first and second complementary devices having first, second, and third terminals, respectively, wherein current flowing from the second terminal to the third terminal has its quantity and direction being varying in dependant on the voltage driven to the first terminal, wherein the currents flowing through the first and second complementary devices vary in opposite relationship.
Abstract: The present invention relates to circuits having differential structure which uses complementary devices for processing single-ended signal. The single-ended differential circuit in accordance with the present invention, comprises first and second complementary devices having first, second, and third terminals, respectively, wherein current flowing from the second terminal to the third terminal has its quantity and direction being varying in dependant on the voltage driven to the first terminal, wherein the currents flowing through the first and second complementary devices vary in opposite relationship.
Abstract: The present invention is to provide a charge pump circuit for improving switching speed and compensating mismatch between a source and a sink currents flowing to output terminal. A charge pump circuit according to the first embodiment of the present invention comprises a first and second switching elements, a discharging and charging elements, a biasing unit, a first and second compensating unit, a charge pumping unit, a current mirror unit, a contol unit, and a biasing unit. The compensating circuit removes the deterioration owing to the parasitic capacitance, and the control circuit controls the charge that is flowed or emitted from the parasitic capacitance. A charge pump circuit according to the second embodiment of the present invention comprises a charge pumping unit, a current mirror unit, a contol unit a biasing unit. The charge pump circuit decects the mismatch between the output currents via the control unit, and compensates the mismatch by the biasing unit.
Abstract: This present invention is related to a variable gain low noise amplifier which is operated to the best operation of input matching, gain and noise characteristics, linearity. The variable gain low noise amplifier according to an embodiment of the present invention includes a first amplifying cell operated in high gain mode, second amplifying cell operated in low gain mode, selectively matching circuit, and fist short-circuit means. It is provided to the variable gain low noise amplifier according to the present invention for operating the best operation in each gain mode so that the circuit operated in high and low gain modes is not affect to a load with each other.
Abstract: The present invention relates to circuits having differential structure which uses complementary devices for processing single-ended signal. The single-ended differential circuit in accordance with the present invention, comprises first and second complementary devices having first, second, and third terminals, respectively, wherein current flowing from the second terminal to the third terminal has its quantity and direction being varying in dependant on the voltage driven to the first terminal, wherein the currents flowing through the first and second complementary devices vary in opposite relationship.
Abstract: The present invention relates to the improvement of a phase noise characteristics of supply voltage in VCO. The delay in delay cells may be controlled to use the resistor of a transmission gate instead of a tail current. That is, the delay of cells is controlled by applying the overdrive voltage in transmission gate. And the self-regulating may be possible to composing a feedback inside the delay cells.
Type:
Application
Filed:
February 4, 2003
Publication date:
November 27, 2003
Applicant:
Integrant Technologies Inc.
Inventors:
In-Chul Hwang, Sung-Mo Kang, Bo-Eun Kim
Abstract: A broadband variable gain amplifier with improved linearity and gain characteristic is provided. According to the present invention, the broadband variable gain amplifier comprises: an amplification unit for amplifying an input signal applied to an input terminal and outputting an amplified signal to an output terminal; and a gain control unit which is connected between the input and output terminals, and for controlling gain of said amplification unit, wherein said gain control unit comprises: a variable resistance unit whose resistance value is varied according to a control signal; and a broadband matching unit for proving an optimal impedance characteristic to the input terminal said amplification unit in a broad band, where in said variable gain resistance unit and said broadband matching unit is connected in parallel.
Abstract: An image rejection mixer (IRM) for rejecting signals having image frequency and, more particularly, a mixer for rejecting signals of image frequency by using mismatch compensation is provided.
Abstract: The present invention relates to circuits having differential structure which uses complementary devices for processing single-ended signal. The single-ended differential circuit in accordance with the present invention, comprises first and second complementary devices having first, second, and third terminals, respectively, wherein current flowing from the second terminal to the third terminal has its quantity and direction being varying in dependant on the voltage driven to the first terminal, wherein the currents flowing through the first and second complementary devices vary in opposite relationship.