Abstract: A boiler system is provided comprising: a furnace adapted to receive a fuel to be burned to generate hot working gases; a fuel supply structure associated with the furnace for supplying fuel to the furnace; a superheater section associated with the furnace and positioned to receive energy in the form of heat from the hot working gases; and a controller. The superheater section may comprise a platen including a tube structure with an end portion and a temperature sensor for measuring the temperature of the tube structure end portion and generating a signal indicative of the temperature of the tube structure end portion. The controller may be coupled to the temperature sensor for receiving and monitoring the signal from the sensor.
Type:
Application
Filed:
September 12, 2019
Publication date:
January 2, 2020
Applicant:
INTEGRATED TEST & MEASUREMENT
Inventors:
Andrew K Jones, David Fuhrmann, Tim Carlier, Mark Sargent
Abstract: A boiler system is provided comprising: a furnace adapted to receive a fuel to be burned to generate hot working gases; a fuel supply structure associated with the furnace for supplying fuel to the furnace; a superheater section associated with the furnace and positioned to receive energy in the form of heat from the hot working gases; and a controller. The superheater section may comprise a platen including a tube structure with an end portion and a temperature sensor for measuring the temperature of the tube structure end portion and generating a signal indicative of the temperature of the tube structure end portion. The controller may be coupled to the temperature sensor for receiving and monitoring the signal from the sensor.
Type:
Application
Filed:
January 9, 2017
Publication date:
April 27, 2017
Applicant:
INTEGRATED TEST & MEASUREMENT
Inventors:
Andrew K. Jones, David Fuhrmann, Tim Carlier, Mark Sargent
Abstract: Detecting fouling of a heat exchanger of a boiler includes emitting a spray of pressurized fluid from a nozzle of a sootblower element when the nozzle is adjacent to a surface of the heat exchanger, and sensing a value indicative of a reactive force created by an impact of the pressurized fluid on the surface of the heat exchanger and translated back to the sootblower element through the spray of the pressurized fluid. The method also includes determining when a substantial deposit is on the surface of the heat exchanger indicating fouling based on the value indicative of the reactive force.