Abstract: Methods and formulations are provided to reduce pigmentation in skin, using an array of compounds selected from benzimidazoles, phenylthioureas, phenyltiols, phenylamines, bi- and multicyclic phenols, thiopheneamines, and benzothiamides. The compounds preferably inhibit pigment systhesis in melanocytes through the tyrosinase pathway. The methods can be used for lightening skin, and for treating uneven skin complexions which result from hyperpigmentation-related medical conditions such as melasma, age spots, freckles, ochronosis, and lentigo. The compounds can be used medically or cosmetically.
Abstract: Methods, compounds, and formulations are provided to reduce pigmentation in mammalian skin, comprising hydroxamic acid and its derivatives, and especially benzohydroxamic acid and its derivatives. The compounds preferably inhibit pigment synthesis in melanocytes through inhibition of melanocyte tyrosinase. The methods can be used for lightening skin, and for treating uneven skin complexions, which result from hyperpigmentation-related medical conditions such as melasma, age spots, freckles, ochronosis, and lentigo. The compounds can be used medically or cosmetically, and preferably as topical formulations.
Abstract: The present invention is directed to methods for making and using informative nucleic acid arrays (e.g., DNA including cDNA, RNA, PNA) for research and other applications in various disciplines or areas of interest. Examples of such disciplines include, without limitation, dermatology, pharmacology, toxicology, oncology, gynecology, urology, gastroenterology, as well as studies of sentinel gene discovery, signature gene discovery, mechanism of action, drug screening, drug metabolism, etc. The informative nucleic acid arrays of the present invention may contain only the gene sequences that are of interest in a particular area of interest or application, and may exclude other gene sequences.
Type:
Grant
Filed:
January 16, 2001
Date of Patent:
October 21, 2003
Assignee:
Integriderm, Inc.
Inventors:
Thomas P. Dooley, Ernest V. Curto, Richard L. Davis, Jr.