Abstract: A system including a mobile vehicle, an implement, a position sensor, a controller, a user interface (a touch-screen monitor, video monitor or keypad, as examples), a software program to compute a calibration trajectory, and a steering system for steering the vehicle to the desired or adjusted trajectory based on the error between the vehicle's desired and actual positions. In one embodiment, non-co-located sensing and control combine with a calibration procedure to help eliminate model error. Another embodiment uses co-located sensing (but not control) to calibrate the model.
Type:
Grant
Filed:
November 15, 2001
Date of Patent:
October 12, 2004
Assignee:
Integrinautics Corporation
Inventors:
Michael L. O Connor, Thomas Bell, Michael L. Eglington, Lars Leckie, Gregory M. Gutt, Kurt R. Zimmerman
Abstract: A measurement system and an associated method for determining the positions of multiple antennas to centimeter level accuracy. The system involves minimal incremental hardware cost per additional antenna to be tracked. The primary frequency RF signals are processed by a primary frequency RF section dedicated to each antenna. The secondary frequency RF signals from all the antennas are multiplexed and input to a secondary frequency RF section corresponding to each secondary RF frequency. A correlator derives code and carrier phase for the processed primary and secondary frequency RF signals. A processor thereafter reconstructs the carrier phase for the secondary frequency RF signals. The processor finally uses these reconstructed phases to resolve carrier cycle ambiguities and to determine the position of the antennas.
Abstract: A method and a system for L1/L2 phase and magnitude determination in satellite navigation equipment is disclosed herein. The method generates separate W code estimates for the L1 signal and the L2 signal, the estimates being uncorrelated with the error in the inphase and the quadrature components of the corresponding signals. The W code is estimated using both the L1 signal as well as the L2 signal. The L1 and L2 baseband signals are obtained from the corresponding RF signals. The baseband signals are added and then filtered using a non-causal FIR LPF. This filter has the property that the output at a time instant is uncorrelated with the input at that time instant. In the preferred embodiment, a one-W-code-bit I&D filter is used instead of a FIR LPF. In an alternate embodiment, a single W code estimate is obtained for both the L1 and the L2 signal.
Type:
Grant
Filed:
April 14, 2003
Date of Patent:
August 31, 2004
Assignee:
IntegriNautics Corporation
Inventors:
David G. Lawrence, H. Stewart Cobb, Paul Y. Montgomery
Abstract: A method for adjusting a desired trajectory of an automatically guided vehicle guidance system to match a physical constraint such as an obstacle or boundary. The method works around obstacles and boundaries as they occur, consistent with the original trajectory. The method is independent of the type of vehicle. The method may be used regardless of whether the vehicle is under automatic guidance, and the method has a low computational cost.
Type:
Grant
Filed:
November 15, 2001
Date of Patent:
November 4, 2003
Assignee:
IntegriNautics Corporation
Inventors:
Michael L. O Connor, Thomas Bell, Michael L. Eglington, Lars Leckie, Gregory M. Gutt, Kurt R. Zimmerman
Abstract: A low-cost, solid-state position sensor system suitable for making precise code and carrier phase measurements in the L1 and L2 bands of GPS uses an ordinary, low-cost OEM card single-frequency carrier phase tracking C/A code receiver and includes low-cost hardware for sensing the L1 and L2 components of GPS carrier phase. Such measurements are suitable for general use in a variety of fields, including surveying. They are also of sufficient quality to be used in controlling heavy machinery, such as aircraft, farm tractors, and construction and mining equipment. A C/A code continuous tracking GPS receiver is used to produce GPS positioning fixes and real-time L1 carrier phase measurements. This C/A code receiver generates timing and reference information for a digital sampling component. This sampling component processes the L1 and L2 signals from the GPS signals in view.
Type:
Application
Filed:
April 3, 2003
Publication date:
October 30, 2003
Applicant:
IntegriNautics Corporation
Inventors:
Clark Cohen, David Lawrence, Stewart Cobb, Paul Montgomery, Miro Samek, Kurt Zimmerman, Michael O'Connor, Walter Melton, Gregory Gutt