Patents Assigned to Intelomed, Inc.
-
Patent number: 11197617Abstract: A system and method for hemodynamic dysfunction detection may include at least one sensor configured to received one or more signals from a patient, a computing device in data communication with the at least one sensor, a computer-readable storage medium in communication with the computing device, an input device, and an output device. The system may include computer readable instructions to cause the system to receive at least one signal in the time domain from the sensor, determine at least one metric in the frequency domain from the at least one signal in the time domain, and determine the cardiovascular state of the patient from a combination of the at least one metric in the frequency domain and information contained in at least one database of cardiovascular states. The system may also notify a user of a immanent patient cardiovascular event and recommend one or more interventions to mitigate it.Type: GrantFiled: November 6, 2017Date of Patent: December 14, 2021Assignee: Intelomed, Inc.Inventors: Jan Berkow, Anne Brumfield
-
Patent number: 10898141Abstract: A system and method for evaluating the respiratory health of a patient and indicating and characterizing respiratory stress includes a sensor in operative communication with a patient for generating at least one biological signal, having a waveform curve in the time domain. The biological signal is processed and a waveform curve is computed, reflective of the respiration rate of the patient. A correlation is then determined between the biological signal waveform curve and respiration rate waveform curve and a respective correlation coefficient is determined. Frequency analysis is performed on the biological signal and a determination is made of a respiration metric reflective of the ratio of spectral components associated with the respiration component of the biological signal in relation to the total spectral components for the biological signal. The correlation coefficient and the respiration metric are combined to form a respiratory stress metric for displaying to a user.Type: GrantFiled: September 16, 2016Date of Patent: January 26, 2021Assignee: Intelomed, Inc.Inventor: Anne Brumfield
-
Patent number: 10568583Abstract: A method for identifying cardiac bradiacardia behavior may include acquiring pulse volume wave data from a sensor associated with a patient, and calculating metrics associated with peaks detected therein. The metrics may include changes in peak amplitudes of pulse volume peaks and in the times of occurrence of pulse volume peaks. Alternative metrics may include changes in frequency domain parameters derived from the time domain pulse volume wave data. Peak amplitude values may be compared to an amplitude baseline, and differences in successive peak occurrence times may be compared to a time baseline. Cardiac bradycardia behavior may be identified by a combination of a decrease in the pulse volume peak amplitude and an increase in successive peak occurrence times. A system to implement the method may include a computing device in data communication with a photo-plethysmograph. Alternative sensors may include a blood pressure cuff and an ECG device.Type: GrantFiled: June 11, 2014Date of Patent: February 25, 2020Assignee: Intelomed, Inc.Inventors: Anne M. Brumfield, Jan K. Berkow
-
Patent number: 10512408Abstract: A computer-implemented method for characterizing circulatory blood volume is disclosed. The method has the steps of acquiring a biological signal that emulates the arterial pulse wave from a sensor. Two derived parameters, circulatory stress, which reflects a harmonic of heart rate, and circulatory blood flow, which reflects the amplitude of the unprocessed biological signal, are extrapolated from the biological signal, and are each compared to a threshold value and assessed to determine an adequacy of circulatory blood volume. In embodiments, the assessment of circulatory blood volume is used to manage a patient's cardiovascular autoregulatory function or the adequacy of transfer of fluids to and from the circulatory system, with the ultimate goal of achieving a circulatory blood volume that adequately supplies the demands of the patient's tissues and organs.Type: GrantFiled: August 19, 2015Date of Patent: December 24, 2019Assignee: Intelomed Inc.Inventor: Jan Berkow
-
Patent number: 10390767Abstract: A method for identifying cardiac dysrhythmia behavior may include acquiring pulse volume wave data from a sensor associated with a patient, and calculating metrics associated with peaks detected therein. The metrics may include differences in amplitudes of successive pulse volume peaks and differences in the times of occurrence of successive pulse volume peaks. A dispersion analysis of the time differences, obtained during a defined time window, may result in one or more time difference dispersion metrics. Amplitude differences may be compared to an amplitude baseline, and time differences may be compared to a time baseline. Cardiac dysrhythmia behavior may be identified by a combination of an amplitude difference outside of the amplitude baseline, a corresponding time difference outside of the time baseline, and the values of one or more time difference dispersion metrics.Type: GrantFiled: June 4, 2014Date of Patent: August 27, 2019Assignee: Intelomed Inc.Inventors: Anne M. Brumfield, Jan K. Berkow
-
Publication number: 20180055377Abstract: A system and method for hemodynamic dysfunction detection may include at least one sensor configured to received one or more signals from a patient, a computing device in data communication with the at least one sensor, a computer-readable storage medium in communication with the computing device, an input device, and an output device. The system may include computer readable instructions to cause the system to receive at least one signal in the time domain from the sensor, determine at least one metric in the frequency domain from the at least one signal in the time domain, and determine the cardiovascular state of the patient from a combination of the at least one metric in the frequency domain and information contained in at least one database of cardiovascular states. The system may also notify a user of a immanent patient cardiovascular event and recommend one or more interventions to mitigate it.Type: ApplicationFiled: November 6, 2017Publication date: March 1, 2018Applicant: Intelomed, Inc.Inventors: Jan Berkow, Anne Brumfield
-
Patent number: 9808160Abstract: A system and method for hemodynamic dysfunction detection may include at least one sensor configured to received one or more signals from a patient, a computing device in data communication with the at least one sensor, a computer-readable storage medium in communication with the computing device, an input device, and an output device. The system may include computer readable instructions to cause the system to receive at least one signal in the time domain from the sensor, determine at least one metric in the frequency domain from the at least one signal in the time domain, and determine the cardiovascular state of the patient from a combination of the at least one metric in the frequency domain and information contained in at least one database of cardiovascular states. The system may also notify a user of a immanent patient cardiovascular event and recommend one or more interventions to mitigate it.Type: GrantFiled: August 12, 2014Date of Patent: November 7, 2017Assignee: Intelomed, Inc.Inventors: Jan K. Berkow, Anne M. Brumfield
-
Patent number: 9173579Abstract: A computer-implemented method for characterizing circulatory blood volume is disclosed. The method has the steps of acquiring a biological signal that emulates the arterial pulse wave from a sensor. Two derived parameters, circulatory stress, which reflects a harmonic of heart rate, and circulatory blood flow, which reflects the amplitude of the unprocessed biological signal, are extrapolated from the biological signal, and are each compared to a threshold value and assessed to determine an adequacy of circulatory blood volume. In embodiments, the assessment of circulatory blood volume is used to manage a patient's cardiovascular autoregulatory function or the adequacy of transfer of fluids to and from the circulatory system, with the ultimate goal of achieving a circulatory blood volume that adequately supplies the demands of the patient's tissues and organs.Type: GrantFiled: July 8, 2011Date of Patent: November 3, 2015Assignee: INTELOMED, INC.Inventor: Jan Berkow
-
Patent number: 9002440Abstract: A computer-implemented method for characterizing circulatory blood volume and autoregulatory compensatory mechanisms to maintain circulatory blood volume is disclosed. A biological signal that emulates the arterial pulse wave is collected from a sensor. Three derived parameters are extrapolated from the biological signal. The first parameter, circulatory stress, reflects of the changes of the heart rate frequency. The second, circulatory blood volume, reflects the changes in the frequency strength of the heart rate frequency. The third, Pulse Volume Alteration (PVA) Index is a ratio of the sum of the strengths of the heart rate frequency harmonics to the strength of the heart rate frequency of the unprocessed biological signal. Each parameter is compared to a threshold value and assessed to determine an adequacy of circulatory blood volume and an appropriateness of the autoregulatory mechanisms used to maintain circulatory blood volume adequacy.Type: GrantFiled: March 15, 2013Date of Patent: April 7, 2015Assignee: Intelomed, Inc.Inventors: Jan K. Berkow, Anne M. Brumfield
-
Patent number: 8423108Abstract: A system and method for identifying volume status of a patient are disclosed. A pulse density signal is recorded from the patient. The pulse density signal is filtered to capture a respiration sampling period and a plurality of cardiac cycles occurring during the respiration sampling period. Mean pulse pressure and peak blood flow velocity for the respiration sampling period are calculated and are used as indices of volume status of the patient.Type: GrantFiled: March 15, 2010Date of Patent: April 16, 2013Assignee: Intelomed, Inc.Inventor: Jan Berkow
-
Publication number: 20120029374Abstract: A computer-implemented method for characterizing circulatory blood volume is disclosed. The method has the steps of acquiring a biological signal that emulates the arterial pulse wave from a sensor. Two derived parameters, circulatory stress, which reflects a harmonic of heart rate, and circulatory blood flow, which reflects the amplitude of the unprocessed biological signal, are extrapolated from the biological signal, and are each compared to a threshold value and assessed to determine an adequacy of circulatory blood volume. In embodiments, the assessment of circulatory blood volume is used to manage a patient's cardiovascular autoregulatory function or the adequacy of transfer of fluids to and from the circulatory system, with the ultimate goal of achieving a circulatory blood volume that adequately supplies the demands of the patient's tissues and organs.Type: ApplicationFiled: July 8, 2011Publication date: February 2, 2012Applicant: Intelomed Inc.Inventor: Jan Berkow
-
Publication number: 20110152651Abstract: A system and method for identifying volume status of a patient are disclosed. A pulse density signal is recorded from the patient. The pulse density signal is filtered to capture a respiration sampling period and a plurality of cardiac cycles occurring during the respiration sampling period. Mean pulse pressure and peak blood flow velocity for the respiration sampling period are calculated and are used as indices of volume status of the patient.Type: ApplicationFiled: March 15, 2010Publication date: June 23, 2011Applicant: Intelomed Inc.Inventor: Jan Berkow
-
Patent number: 7678057Abstract: In an embodiment, the present invention provides a device that identifies cardiovascular dysfunction of a subject. The claimed device comprises a controller, a transducer, and a processor. The controller initiates collection of a plurality of data related to a physiological condition. The transducer collects data over a plurality of cycles and transfers the data to the processor, which reduces the received data signal into an output using a novel formula. In an example the data correlate with data that are directly related to cardiovascular dysfunction but that are of limited use.Type: GrantFiled: March 24, 2006Date of Patent: March 16, 2010Assignees: Intelomed, Inc., University of Pittsburgh - of the Commonwealth System of Higher EducationInventors: Jan Berkow, Juan Carlos Puyana, Michael Pinsky