Patents Assigned to Intematix Corporation
  • Patent number: 8773337
    Abstract: A color temperature tunable white light source comprises a first LED arrangement comprising at least one blue emitting LED configured to excite a remote phosphor and a second LED arrangement comprising at least one red emitting LED. The LED arrangements are configured such that the composite light emitted by the LED arrangements appears white in color. The relative drive currents of the LEDs is controllable, and thus variable in relative magnitude, such that the color temperature of the composite light emitted by the source is electrically tunable.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: July 8, 2014
    Assignee: Intematix Corporation
    Inventors: Yi-Qun Li, Yi Dong, Xiaofeng Xu
  • Publication number: 20140158935
    Abstract: Disclosed herein are green-emitting, garnet-based phosphors having the formula (Lu1-a-b-cYaTbbAc)3(Al1-dBd)5(O1-eCe)12 :Ce,Eu, where A is selected from the group consisting of Mg, Sr, Ca, and Ba; B is selected from the group consisting of Ga and In; C is selected from the group consisting of F, Cl, and Br; and 0?a?1; 0?b?1; 0<c?0.5; 0?d?1; and 0<e?0.2. These phosphors are distinguished from anything in the art by nature of their inclusion of both an alkaline earth and a halogen. Their peak emission wavelength may lie between about 500 nm and 540 nm; in one embodiment, the phosphor (Lu,Y,A)3Al5(O,F,Cl)12:Eu2+ has an emission at 540 nm. The FWHM of the emission peak lies between 80 nm and 150 nm. The present green garnet phosphors may be combined with a red-emitting, nitride-based phosphor such as CaAl SiN3 to produce white light.
    Type: Application
    Filed: September 10, 2013
    Publication date: June 12, 2014
    Applicant: Intematix Corporation
    Inventors: Yusong Wu, Dejie Tao, Shifan Cheng, Yi-Qun Li
  • Patent number: 8740400
    Abstract: A white light illumination system may comprise: a phosphor package; a first radiation source for providing co-excitation radiation to the phosphor package, the source emitting in wavelengths ranging from about 250 nm to about 410 nm; and a second radiation source for providing co-excitation radiation to the phosphor package, the source emitting in wavelengths ranging from about 410 nm to about 540 nm; wherein the phosphor package is configured to emit photoluminescence in wavelengths ranging from about 440 nm to about 700 nm upon co-excitation from the first and second radiation sources, and wherein the phosphor package comprises at least one narrow band green phosphor with a photoluminescence peak with a full width at half maximum of less than 60 nm, and wherein the narrow band green phosphor is configured to emit photoluminescence in wavelengths ranging from about 500 nm to about 550 nm.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: June 3, 2014
    Assignee: Intematix Corporation
    Inventors: Dejie Tao, Yi-Qun Li, Gang Wang
  • Publication number: 20140117253
    Abstract: A photoluminescent daylight panel for converting higher energy shorter wavelength daylight to lower energy longer wavelength light comprises: a light transmissive substrate; at least one photoluminescent material configured to absorb at least a portion of daylight radiation of wavelengths between about 350 nm and about 450 nm and convert it to light with a wavelength greater than about 600 nm.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 1, 2014
    Applicant: Intematix Corporation
    Inventors: Charles Edwards, Gang Wang
  • Publication number: 20140103796
    Abstract: Embodiments concern various LED-based lighting arrangements, such as for use in downlights or area lights, with increased light efficacy by utilizing a light reflective component to define a light reflective mixing chamber that is substantially frusto-conical, frusto-pyramidal, hemispherical, or paraboloidal. The reflective component may be single-piece component configured to fit within a pre-existing housing and placed between the LEDs and a wavelength conversion component.
    Type: Application
    Filed: September 26, 2013
    Publication date: April 17, 2014
    Applicant: Intematix Corporation
    Inventor: Michael Jansen
  • Publication number: 20140103373
    Abstract: A solid-state light emitting device comprises a light transmissive thermally conductive circuit board; an array of solid-state light emitters (LEDs) mounted on, and electrically connected to, at least one face of the circuit board; and a photoluminescence wavelength conversion component. The wavelength conversion component comprises a mixture of particles of at least one photoluminescence material (phosphor) and particles of a light reflective material. The emission product of the device comprises the combined light generated by the LEDs and the photoluminescence material. The wavelength conversion component can comprise a layer of the phosphor material and particles of a light reflective material applied directly to the array of LEDs in the form of an encapsulant. Alternatively the photoluminescence component is a separate component and remote to the array of LEDs such as tubular component that surrounds the LEDs.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 17, 2014
    Applicant: INTEMATIX CORPORATION
    Inventors: Yi-Qun Li, Johnathan Melman, Xianglong Yuan, Bing Dai, Gang Wang, Charles Edwards
  • Patent number: 8686449
    Abstract: A light emitting device comprises a substantially planar light transmissive substrate having a light emitting surface and an opposite surface. The substrate is configured as a light guiding medium. The light emitting device also comprises at least one phosphor material disposed as a layer on the light emitting surface with a plurality of window areas and at least one source of excitation radiation of a first wavelength positioned adjacent to at least one peripheral edge of the substrate. The source is configured to couple excitation radiation into the substrate such that it is waveguided within the substrate by total internal reflection. Additionally, the light emitted by the device from the light emitting surface comprises first wavelength radiation and second, longer wavelength photoluminescent light emitted by the phosphor layer as a result of excitation by the source.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 1, 2014
    Assignee: Intematix Corporation
    Inventor: Yi-Qun Li
  • Publication number: 20140084783
    Abstract: Red-emitting phosphors may comprise a nitride-based composition represented by the chemical formula MaSrbSicAldNeEuf, wherein: M is at least one of Mg, Ca, Sr, Ba, Y, Li, Na, K and Zn, and 0<a<1.0; 1.5<b<2.5; 4.0?c?5.0; 0?d?1.0; 7.5<e<8.5; and 0<f<0.1; wherein a+b+f>2+d/v and v is the valence of M. Furthermore, nitride-based red-emitting phosphor compositions may be represented by the chemical formula MxM?2Si5-yAlyN8:A, wherein: M is Mg, Ca, Sr, Ba, Y, Li, Na, K and Zn, and x>0; M? is at least one of Mg, Ca, Sr, Ba, and Zn; 0?y?0.15; and A is at least one of Eu, Ce, Tb, Pr, and Mn; wherein x>y/v and v is the valence of M, and wherein the red-emitting phosphors have the general crystalline structure of M?2Si5N8:A.
    Type: Application
    Filed: December 3, 2013
    Publication date: March 27, 2014
    Applicant: Intematix Corporation
    Inventors: Shengfeng Liu, Yi-Qun Li, Ka Y. Leung, Dejie Tao
  • Patent number: 8679367
    Abstract: A green-emitting phosphor having the formula AaBbCcOdNe:RE, wherein A is a positively charged divalent element; B is a positively charged trivalent element; C is a positively charged tetravalent element; and RE is a rare earth activator. The parameter a ranges from about 0.5 to about 1.5; the parameter b ranges from about 0.8 to about 3.0; the parameter c ranges from about 3.5 to about 7.0; the parameter d ranges from about 0.1 to about 3.0; and the parameter e ranges from about 5.0 to about 11.0. A is at least one of Mg, Ca, Sr, Ba, and Zn; B (the letter) is at least one of B (boron), Al, Ga, and In; C (the letter) is at least one of C (carbon), Si, Ge, and Sn; O is oxygen; N is nitrogen; and RE is at least one of Eu, Ce, Pr, Tb, and Mn.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: March 25, 2014
    Assignee: Intematix Corporation
    Inventors: Shengfeng Liu, Dejie Tao, Yi-Qun Li
  • Patent number: 8663502
    Abstract: A red-emitting phosphor comprises a nitride-based composition represented by the chemical formula M(x/v)M?2Si5-xAlxN8:RE, wherein: M is at least one monovalent, divalent or trivalent metal with valence v; M? is at least one of Mg, Ca, Sr, Ba, and Zn; and RE is at least one of Eu, Ce, Tb, Pr, and Mn; wherein x satisfies 0.1?x<0.4, and wherein the phosphor has the general crystalline structure M?2Si5N8:RE, Al substitutes for Si within the crystalline structure, and M is located substantially at interstitial sites. Furthermore, the phosphor is configured such that 1,000 hours of aging at 85° C. and 85% humidity results in a deviation in chromaticity coordinates CIE ?x and ?y of less than about 0.03. Furthermore, the phosphor absorbs radiation in the UV and blue and emits light with a photoluminescence peak wavelength within the range from about 620 to 650 nm.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 4, 2014
    Assignee: Intematix Corporation
    Inventors: Dejie Tao, Yi-Qun Li
  • Publication number: 20140055982
    Abstract: A white light illumination system may comprise: a phosphor package; a first radiation source for providing co-excitation radiation to the phosphor package, the source emitting in wavelengths ranging from about 250 nm to about 410 nm; and a second radiation source for providing co-excitation radiation to the phosphor package, the source emitting in wavelengths ranging from about 410 nm to about 540 nm; wherein the phosphor package is configured to emit photoluminescence in wavelengths ranging from about 440 nm to about 700 nm upon co-excitation from the first and second radiation sources, and wherein the phosphor package comprises at least one narrow band green phosphor with a photoluminescence peak with a full width at half maximum of less than 60 nm, and wherein the narrow band green phosphor is configured to emit photoluminescence in wavelengths ranging from about 500 nm to about 550 nm.
    Type: Application
    Filed: October 25, 2013
    Publication date: February 27, 2014
    Applicant: Intematix Corporation
    Inventors: Dejie Tao, Yi-Qun Li, Gang Wang
  • Patent number: 8651692
    Abstract: An LED based lamp comprises: an enclosure with an opening that comprises a light emission plane through which light is emitted from the lamp; a plurality of LEDs located along at least one wall of the enclosure and operable to generate light of a first wavelength range, wherein the LEDs are configured such that in operation their emission axis is oriented within a plane that is substantially parallel with or directed away from the light emission plane; and a first light reflective surface located on the base of the enclosure and configured such that in operation light is reflected through the light emission plane. A light emitting sign comprises the lamp of the invention with a light transmissive display surface overlying the light emission plane.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: February 18, 2014
    Assignee: Intematix Corporation
    Inventor: Haitao Yang
  • Publication number: 20140042365
    Abstract: A green-emitting phosphor having the formula AaBbCcOdNe,:RE, wherein A is a positively charged divalent element; B is a positively charged trivalent element; C is a positively charged tetravalent element; and RE is a rare earth activator. The parameter a ranges from about 0.5 to about 1.5; the parameter b ranges from about 0.8 to about 3.0; the parameter c ranges from about 3.5 to about 7.0; the parameter d ranges from about 0.1 to about 3.0; and the parameter e ranges from about 5.0 to about 11.0. A is at least one of Mg, Ca, Sr, Ba, and Zn; B (the letter) is at least one of B (boron), Al, Ga, and In; C (the letter) is at least one of C (carbon), Si, Ge, and Sn; O is oxygen; N is nitrogen; and RE is at least one of Eu, Ce, Pr, Tb, and Mn.
    Type: Application
    Filed: October 2, 2012
    Publication date: February 13, 2014
    Applicant: INTEMATIX CORPORATION
    Inventors: Shengfeng Liu, Dejie Tao, Yi-Qun Li
  • Publication number: 20140027799
    Abstract: Embodiments of the present invention are directed toward white light illumination systems (so called “white LEDs”) that comprise a multi-chip excitation source and a phosphor package. In a two-chip source, the two LEDs may be UV-emitting and blue emitting, or blue-emitting and green-emitting. The phosphor package is configured to emit photoluminescence in wavelengths ranging from about 440 nm to about 700 nm upon co-excitation from the first and second radiation sources. The photoluminescence emitted by the phosphors is at least 40 percent of the total power in the white light illumination, and the portion of the total power in the white light illumination contributed by the first and second radiation sources (LEDs) is less than about 60 percent. This ratio can vary in alternative embodiments, and includes 50/50, 60/40, 70/30, and 80/20, respectively. The white light illumination emitted by the system has in one embodiment a color rendering index (CRI) greater than about 90.
    Type: Application
    Filed: October 3, 2013
    Publication date: January 30, 2014
    Applicant: Intematix Corporation
    Inventors: Yi-Qun Li, Gang Wang, Li-De Chen
  • Publication number: 20140022759
    Abstract: A lighting system comprises at least one excitation source (5), preferably an LED, operable to generate and radiate excitation radiation of a first wavelength (?1); a shade (4) configured to at least in part surround the at least one source (5) and remotely located thereto; and at least one phosphor (16) provided in or on at least a part of the shade (4), wherein the phosphor (16) emits radiation of a different wavelength in response to incident excitation radiation. The phosphor can be provided on a part of an outer or inner surface of the shade. Alternatively, or in addition, the phosphor is incorporated within the shade. The lighting system finds particular application as a hanging, a desk, a floor standing, a wall mountable, a spot, an outdoor or an accent lighting fixture.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 23, 2014
    Applicant: INTEMATIX CORPORATION
    Inventor: Intematix Corporation
  • Publication number: 20140021495
    Abstract: A light emitting device comprises: a thermally conductive substrate (MCPCB); at least one LED mounted in thermal communication with a surface of the substrate; a housing attached to the substrate and configured such the housing and substrate together define a volume that totally encloses the at least one LED, the housing comprising at least a part that is light transmissive (window); and at least one phosphor material provided on an inner surface of the housing within said volume said phosphor being operable to absorb at least a part of the excitation light emitted by the at least one light emitting diode and to emit light of a second wavelength range. The housing is attached to the substrate such that the volume is substantially water tight, preferably air/gas tight.
    Type: Application
    Filed: March 4, 2013
    Publication date: January 23, 2014
    Applicant: INTEMATIX CORPORATION
    Inventor: Intematix Corporation
  • Patent number: 8631598
    Abstract: A light emitting sign comprising a plurality of blue LEDs operable to generate blue excitation light and a light emitting display surface comprising a light transmissive substrate and at least one phosphor overlaying at least a portion of one face of the substrate. The phosphor is configured to absorb at least a portion of the blue light generated by the LEDs and, in response, to emit light of a selected color other than blue. Regions of the display surface intended to generate blue light do not include the phosphor.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: January 21, 2014
    Assignee: Intematix Corporation
    Inventors: Yi-Qun Li, Yi Dong, James Caruso, Charles Edwards
  • Patent number: 8628255
    Abstract: A lighting system for generating an illumination product comprises an excitation source, blue/UV LED, operable to generate excitation radiation and a remotely located phosphor, photo luminescent material. Excitation radiation is guided from the excitation source to the phosphor by a waveguiding medium, the waveguiding medium being configured such that the distance the radiation travels from the excitation source to the phosphor layer is at least one centimeter in length. The UV/blue excitation source provides excitation radiation to the phosphor(s), causing the phosphor(s) to photo luminesce, and it may also provide a component of the final illumination product. The configuration of the waveguide allows a greater flexibility in lighting system configurations, such as hanging lighting fixtures, desk lighting fixtures, floor standing lighting fixtures, desk lamps, track lighting, spot lighting, accent lighting, lighting panels, inspection lamps and endoscopes.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: January 14, 2014
    Assignee: Intematix Corporation
    Inventor: Yi-Qun Li
  • Patent number: 8616714
    Abstract: A solid-state lamp comprises: one or more solid-state light emitting devices (typically LEDs); a thermally conductive body; at least one duct; and a photoluminescence wavelength conversion component remote to the one or more LEDs. The lamp is configured such that the duct extends through the photoluminescence wavelength conversion component and defines a pathway for thermal airflow through the thermally conductive body to thereby provide cooling of the body and the one or more LEDs.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 31, 2013
    Assignee: Intematix Corporation
    Inventors: Hyung-Chul Lee, Haitao Yang, Charles Edwards, Yi-Qun Li
  • Publication number: 20130341662
    Abstract: Disclosed herein are yellow-green and yellow-emitting aluminate based phosphors for use in white LEDs, general lighting, and LED and backlighting displays. In one embodiment of the present invention, the cerium-activated, yellow-green to yellow-emitting aluminate phosphor comprises the rare earth lutetium, at least one alkaline earth metal, aluminum, oxygen, at least one halogen, and at least one rare earth element other than lutetium, wherein the phosphor is configured to absorb excitation radiation having a wavelength ranging from about 380 nm to about 480 nm, and to emit light having a peak emission wavelength ranging from about 550 nm to about 600 nm.
    Type: Application
    Filed: June 28, 2013
    Publication date: December 26, 2013
    Applicant: Intematix Corporation
    Inventors: Yi-Qun Li, Jingtao Gu, Zhankun Jia, Shifan Cheng