Abstract: A lab-on-chip system comprises an antenna and a communications subsystem to wirelessly transmit information from the lab-on-chip system. The communications subsystem may also receive information, data or instructions from an off-chip system or device. The lab-on-chip system may comprise a passive power subsystem coupled to an antenna to wirelessly receive power in the form of an electromagnetic field, which provides electrical power derived therefrom to at least one other subsystem of the lab-on-chip system.
Abstract: A microchip system comprises a self check subsystem operable to perform a self test of at least one subsystem of the microchip system, and/or on the interoperability of subsystems. An antenna and a communications subsystem wirelessly transmit self check information from the microchip system. The communications subsystem may also receive information, data or instructions from an off-chip system or device. Self check tests may occur during manufacture of the microchip system and/or during operation. The microchip system may comprise a passive power subsystem coupled to an antenna to receive power in the form of an electromagnetic field, and which provides electrical power derived therefrom to at least one other subsystem of the microchip system.
Abstract: A multistage voltage multiplying circuit for single chip passive RF tags is provided, wherein the parasitic capacitance of the diodes of each stage of the voltage multiplying circuit is much less than the parasitic capacitance of the diodes of the preceding stage.
Type:
Grant
Filed:
June 4, 2003
Date of Patent:
February 22, 2005
Assignee:
Intermec IP Corp
Inventors:
Vijay Pillai, Harley Kent Heinrich, Rene D. Martinez
Abstract: The invention provides a system and method for remotely diagnosing and repairing a plurality of Automatic Data Collection (“ADC”) device platforms. A remote service technician utilizes a computing system having browsing software that communicates with a network of ADC platform devices. Diagnostic queries for particular ADC devices may be retrieved by the browsing software from a diagnostic server that sends Hypertext Mark-Up Language (“HTML”) documents, Dynamic Hypertext Mark-Up Language (“DHTML”) documents, and/or Extensible Mark-Up Language (“XML”) documents containing appropriate diagnostic applets. The remote technician sends diagnostic queries to a Simple Network Management Protocol (“SNMP”) master agent at the ADC device platform, and a translator translates the diagnostic queries sent to the ADC device platform into a format suitable for reception by its ADC devices in order to effect anomaly diagnosis and functionality restoration.
Type:
Grant
Filed:
January 29, 1999
Date of Patent:
February 15, 2005
Assignee:
Intermec IP.Corp.
Inventors:
Jon R. Ramberg, Jeffrey M. Hunt, Paul David Shoeman, James T. Katsandres
Abstract: The invention provides a system and method for remotely diagnosing and repairing a plurality of device platforms. A remote service technician utilizes a computing system having browsing software that communicates with a network of platform devices.
Type:
Application
Filed:
September 3, 2004
Publication date:
February 10, 2005
Applicant:
Intermec IP Corp.
Inventors:
Jon Ramberg, Jeffrey Hunt, Paul Shoeman, James Katsandres
Abstract: An RFID reader directly controls computer network applications on the basis of information collected from an RFID tag. The RFID tag includes certain designated fields that identify a destination computer system and/or application program for data recovered from the RFID tag. The RFID reader can then distribute the collected information in a format and to a destination that is determined by the RFID tag, thereby eliminating the need for intermediary software programs or human operators to make such decisions about the distribution of information. This capability permits RFID tag information to be automatically collected and distributed to network applications for ultimate data processing and collection.
Abstract: Work tools such as a printhead, platen, and/or cutting head are spaced normally with respect to a media path based on a location of one or more objects carried by the media, and the position of the media with respect to the work tool. Additionally or alternatively the work tools are selectively operated based on a location of one or more objects carried by the media, and the position of the media with respect to the work tool. The approaches are suitable for the manufacture and use of RFID tags and labels.
Abstract: A communication system in which multiple protocols and proxy services are executed by an access point. In one embodiment of the invention, GVRP and GMRP registrations are combined in a single packet when a wireless device roams to a different VLAN. In addition, outbound GVRP and GMRP multicast messages are handled by an access point (also referred to as a GVRP and GMRP “gateway”) such that the wireless device is not burdened with the associated computational overhead. In a further embodiment, a wireless device may dynamically switch between a VLAN-aware state and a VLAN-unaware state depending on the nature of a detected access point. For example, if a relevant access point supports GVRP, the wireless device may operate as a VLAN terminal. If a wireless device is not attached to an access point with a matching VLAN ID, the wireless device sends and receives VLAN tagged frames.
Abstract: An RFID transponder is provided with an active backscatter amplifier that amplifies and re-transmits a received signal. The RFID transponder comprises an antenna and a circulator having a first port connected to the antenna. A modulator is connected to a second port of the circulator. An amplifier is connected to a third port of the circulator, with the amplifier connected to the modulator. An RF signal impinging upon the antenna passes through the circulator, the amplifier, and the modulator, and returns to the antenna through the circulator. The modulator further comprises an input coupled to the second port of the circulator and an output coupled to an input of the amplifier. The amplifier has an output coupled to the third port of the circulator. The modulator is adapted to modulate the RF signal using on-off keying.
Abstract: A method of operating a device having at least one solid-state memory and at least one spinning media memory for storing data includes from time-to-time, determining whether the device is in motion; and in response to determining that the device is not in motion, transferring frequently accessed data between the spinning media memory and the solid-state memory. An apparatus for use with a device includes at least one solid-state memory; at least one spinning media memory; and a controller configured to transfer frequently accessed data between the spinning media memory and the solid-state memory when the device is not in motion.
Abstract: A system and method is described which utilizes a dual function reader device, which may be a hand-held inventory control device, which first performs an optical read of an optical bar code on a carrier unit, then based on the identification or other information obtained from the optical read a RF read is made of a RF tag attached to, or within, the carrier unit. An indicator light on the carrier unit illuminates when the optical read is completed, which allows an operator to visually verify that the optical read has transpired for the desired carrier unit. The RF tag provides data regarding the inventory of the goods stored within, or on, the carrier unit, the temperature of the goods, the shelf-life of the goods, the source and/or destination of the carrier unit and/or the goods, or other information. Data can also be written to the RF tag by the reader.
Abstract: A remote system includes a radio frequency identification (RFID) tag specifically identified by an RF identification signal. The specific RFID tag is associated with a particular remote data transfer device. When identified, the specific RFID tag changes the state of the associated remote data transfer device from a zero power state to an operational state. Limited power-capacity of a remote power supply is used solely for data transfer between the data transfer device and an administrator. Although many RFID signals may be transmitted over time to the location of many remote systems, each of which has an RFID tag, an RFID signal is only infrequently sent to a specific one of the RFID tags. Such an RFID signal is transmitted only to request a data transfer operation with the particular remote data transfer device that is associated with that specific RFID tag.
Abstract: The present invention provides an RFID transponder that includes a state holding cell that maintains the present state of the RFID transponder during temporary losses of power. After power is restored to the RFID transponder, the state holding cell restores the present state to the RFID transponder so that transactions with an RFID interrogator can continue without having re-transmit redundant commands. The RFID transponder further comprises an RF front end adapted to receive an interrogating RF signal. An analog circuit is coupled to the RF front end and is adapted to recover analog signals from the received interrogating RF signal. The analog circuit provides state information defining a desired state of the RFID transponder corresponding to the analog signals. A digital state machine is coupled to the analog circuit and adapted to execute at least one command in accordance with the state information.
Type:
Grant
Filed:
January 23, 2002
Date of Patent:
November 2, 2004
Assignee:
Intermec IP Corp.
Inventors:
Harley Kent Heinrich, Vijay Pillai, David E. Dieska
Abstract: A user input device employs a number of legends that are selectively illuminable to indicate an active one of alternative input values of a user selectable key.
Abstract: A RFID label with tamper-evident capabilities that is useable with many surfaces. The RFID label has a release layer positioned between the transponder substrate and the printed ink antenna. The release layer uses a pattern of adhesive whereby different surface's cohesive strengths are accommodated. The adhesive pattern accommodates high and low substrate cohesive strength depending on which portion of the label is experiencing separation force. Because the release layer is in contact with the patterned adhesive, when the label is removed the antenna separates from the transponder substrate.
The patterned adhesive may be applied only to a localized area of the label to target a specific transponder feature.
The patterned adhesive may be also be combined with propagation slits in the label carrier film. The slits, when stressed, start propagating tears in the label surface ultimately severing the antenna, thereby destroying the transponder.
Type:
Grant
Filed:
July 17, 2002
Date of Patent:
September 21, 2004
Assignee:
Intermec IP Corp.
Inventors:
Matthew Thomas Adams, Douglas Adrian Taylor
Abstract: A printhead pressure relief mechanism using a non-mechanical media thickness monitoring apparatus. An increase in media thickness is monitored by an emitter/detector pair, a piezo-electric pressure sensor mounted on the print head, a metal detector or a RFID read/write assembly.
Abstract: The invention relates to a device and a process for acquiring bichromatic bar codes, with a two-dimensional sensor with electronic scanning. The height Hy of the scanned portion is modified between at least two successive scanning operations. Thus, the device is or may be adapted to the type and/or to characteristics not known in advance of the code to be read.
Abstract: An RFID tag verifier includes an RF interrogator that transmits a first and second interrogation signal each having a first operational characteristic that differs from the other by a known amount. The RF interrogator receives a first and second return signal corresponding to the respective interrogation signals. A processor determines a response of the RFID tag as defined by a second operational characteristic of the first and second return signals. The verifier can determine the signal strength of the return signal for varying strengths of the interrogation signal. Typically, a flat response is desired Additionally, or alternatively, the verifier can determine the response in terms of signal strength of the response signals for interrogation signals having different frequencies. In some applications frequency selectivity may be desirable. Additionally, or alternatively, the verifier can determine the response in terms of frequency for interrogation signals having varying strengths.
Type:
Grant
Filed:
July 8, 1999
Date of Patent:
August 31, 2004
Assignee:
Intermec IP Corp.
Inventors:
Kursat Eroglu, Patrick L. Helton, Christopher A. Wiklof
Abstract: A method and apparatus for indicating device and system readiness to a user is disclosed. An indicator is located on one or more devices of a data-handling system. The state of the indicator communicates the status of the device or system. The indicator can be standardized across two or more devices of the data-handling system. The indicator can be comprised of a single element or of multiple elements.
Type:
Application
Filed:
July 18, 2003
Publication date:
August 26, 2004
Applicant:
Intermec IP Corp.
Inventors:
Richard J. Mahany, Ronald L. Mahany, John S. Bandringa, Joseph M. Dusio, Pamela S. Mahany
Abstract: A data capturing module combined with a portable data terminal of the hand-held type to record handwritten data. Using a digitized pad, the module can provide for direct input of handwritten data into the system, or a peripheral digital scanner can be employed to provide for data entry. Depending upon the particular application, the module therefore provides for data entry of handwritten text or graphics using the data terminal and other components of a portable data system to enter, display, print or otherwise communicate the handwritten data.
Type:
Application
Filed:
September 16, 2003
Publication date:
August 26, 2004
Applicant:
Intermec IP Corp.
Inventors:
David C. Hacker, Jerry L. Walter, Arvin D. Danielson, Dennis A. Durbin