Abstract: A method and apparatus for transmitting power to active touch stimulating devices associated with a touch sensing apparatus. In this invention four methods of providing power supply to the touch-input device are presented. These methods are: EM induction transmission using a single loop antenna, EM induction transmission using a conductive layer, acoustic transmission through air, and acoustic transmission through an acoustic conductive layer.
Abstract: A touch sensing apparatus for receiving input from one or more touch stimulating devices employs a direct sequence spread spectrum (DSSS) signaling arrangement to transmit signals from the touch stimulating devices for identification and location determination. Active devices are powered by an EM field and generate a touch stimulating signal that is spread spectrum encoded for identification, and signal pickups in a propagation layer receive the touch stimulation signals which are identified by the DSSS encoding and located using received signal strength (RSS) techniques. Semi-active devices are powered by an EM field and receive code instructions to generate specific spread spectrum signals and generate a touch-stimulating signal. Touch stimulating devices are either tethered or tether-free, and powered by batteries or EM fields.
Abstract: A powered touch screen input device is perpetually self-powered and free of any mechanical connection to the touch screen itself. The input device includes at least one photovoltaic cell supported thereon and disposed to receive light from the display screen associated with the touch screen device. The photovoltaic cell is connected to the electronic signaling circuit disposed within the input device. The input device comprises a stylus having a proximal tip connected to the electronic signaling circuit to generate or receive actinic radiation and interact with the touch screen device. A bezel extends about the barrel to enclose the photovoltaic cells and direct light from the display screen to the cells. Alternatively, RF energy may be transmitted to an antenna in the input device and rectified to drive the electronic signaling circuit.
Abstract: A control device provides a variable control signal to electrical apparatus and has a control member, such as a stylus or a turnable or slidable member, that is manipulated to vary the signal. Photoelectric sensors detect and track movement of the control member. The control member is disposed at the face of an electronic image display screen which can display calibration marks, identifying labels, current setting and/or other graphics pertinent to operation of the control device. The display screen also operates as the light source for the photoelectric sensors.
Abstract: Operator interaction with electrical systems is facilitated by providing electromechanical control devices, which have switch buttons, rotary knobs or the like, with flat panel displays that convey information pertaining to the controls that can be changed instantly by a display controller. The display may identify the function of the control, the current setting, create calibration marks or provide other graphics. The images change automatically if the same control is used for multiple functions. In one form of the invention, the display screen has openings in the image area and the controls extend through and protrude from the screen enabling display of graphics in close proximity to the controls. In another form, the settings of controls which are secured to the face of a display screen are optically or magnetically detected by sensors located behind the screen.