Abstract: Systems and methods for securing or encrypting data or other information arising from a user's interaction with software and/or hardware, resulting in transformation of original data into ciphertext. Generally, the ciphertext is generated using context-based keys that depend on the environment in which the original data originated and/or was accessed. The ciphertext can be stored in a user's storage device or in an enterprise database (e.g., at-rest encryption) or shared with other users (e.g., cryptographic communication). The system generally allows for secure federation across organizations, including mechanisms to ensure that the system itself and any other actor with pervasive access to the network cannot compromise the confidentially of the protected data.
Type:
Grant
Filed:
February 5, 2016
Date of Patent:
March 28, 2017
Assignee:
Ionic Security Inc.
Inventors:
Adam Ghetti, Ken Green, Kenneth Silva, Michael Rollins, Nathaniel Tinkler, Jeremy Eckman, Ryan Speers
Abstract: Systems and methods for securing or encrypting data or other information arising from a user's interaction with software and/or hardware, resulting in transformation of original data into ciphertext. Generally, the ciphertext is generated using context-based keys that depend on the environment in which the original data originated and/or was accessed. The ciphertext can be stored in a user's storage device or in an enterprise database (e.g., at-rest encryption) or shared with other users (e.g., cryptographic communication). The system generally allows for secure federation across organizations, including mechanisms to ensure that the system itself and any other actor with pervasive access to the network cannot compromise the confidentially of the protected data.
Type:
Grant
Filed:
February 5, 2016
Date of Patent:
March 28, 2017
Assignee:
Ionic Security Inc.
Inventors:
Adam Ghetti, Jeffrey Howard, James Jordan, Nicholas Smith, Jeremy Eckman, Ryan Speers, Sohaib Bhatti
Abstract: Systems and methods for securing or encrypting data or other information arising from a user's interaction with software and/or hardware, resulting in transformation of original data into ciphertext. Generally, the ciphertext is generated using context-based keys that depend on the environment in which the original data originated and/or accessed. The ciphertext can be stored in a user's storage device or in an enterprise database (e.g., at-rest encryption), or shared with other users (e.g., cryptographic communication). Use of context-based encryption keys enables key association with individual data elements, as opposed to public-private key pairs, or use of conventional user-based or system-based keys. In scenarios wherein data is shared by a sender with other users, the system manages the rights of users who are able to send and/or access the sender's data according to pre-defined policies/roles.