Patents Assigned to IONQ, INC.
  • Patent number: 12112235
    Abstract: Systems and techniques are provided for a port server for heterogeneous hardware. A port server may include computing devices that may include multiple connection types. Storage devices may be connected to the computing devices. The computing devices may receive a communication from an external computing device intended for a hardware device of a heterogenous system over one of the connection types. The communication may be sent to the hardware device of the heterogenous system using one of the connection types. A response may be received from the hardware device of the heterogenous system over the connection type used to send the communication to the hardware device. The response from the hardware device of the heterogenous system may be sent to the external computing device over the connection type over which the communication was received from the external computing device.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: October 8, 2024
    Assignee: IonQ Inc.
    Inventors: Stewart Allen, Aleksey Blinov, Felix Tripier
  • Patent number: 12106926
    Abstract: Aspects of the present disclosure describe an atomic oven including a cathode, an anode that comprises a source material, and a power supply that provides a voltage between the cathode and the anode, wherein applying the voltage causes multiple electrons from the cathode to ablate the source material from the anode or locally heat the anode to cause source material to evaporate from the anode and, in both case, to produce a stream of ablated or evaporated particles that passes through an opening in the cathode.
    Type: Grant
    Filed: July 19, 2023
    Date of Patent: October 1, 2024
    Assignee: IonQ, Inc.
    Inventors: Kai Hudek, Jason Madjdi Amini
  • Patent number: 12086691
    Abstract: The disclosure describes various techniques to control of small angle Mølmer-Sørensen (MS) gates and to handle asymmetric errors. A technique is described that implements a two-qubit calibration circuit with two MS gates, where a parameter ? represents an amount of entanglement of the MS gate. The calibration circuit is run for several values of ? to measure observed parity signals that are direct measurements of the values of ?. Calibration information is generated that describes the relationship between ? and the parity signals, and such calibration information is then provided to arbitrarily calibrate one or more MS gates in a quantum simulation. Another technique is described for using the calibration information in quantum simulations, including for quantum chemistry simulations.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: September 10, 2024
    Assignee: IonQ, Inc.
    Inventors: Jwo-Sy Chen, Neal Pisenti, Yunseong Nam
  • Patent number: 12086203
    Abstract: Embodiments described herein are generally related to a method and a system for performing a computation using a hybrid quantum-classical computing system, and, more specifically, to providing an approximate solution to an optimization problem using a hybrid quantum-classical computing system that includes a group of trapped ions. A hybrid quantum-classical computing system that is able to provide a solution to a combinatorial optimization problem may include a classical computer, a system controller, and a quantum processor. The methods and systems described herein include an efficient and noise resilient method for constructing trial states in the quantum processor in solving a problem in a hybrid quantum-classical computing system, which provides improvement over the conventional method for computation in a hybrid quantum-classical computing system.
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: September 10, 2024
    Assignee: IONQ, INC.
    Inventors: Omar Shehab, Isaac Hyun Kim
  • Patent number: 12088351
    Abstract: Aspects of the present disclosure relate generally to systems and methods for use in the implementation and/or operation of quantum information processing (QIP) systems, and more particularly, to a double individual-addressing multi-beam Raman system for use in QIP systems. A technique is described in which a first multi-channel modulator (MCM), a first telecentric zoom lens, and a first interleaver that form a first optical path of the Raman system that receives a first array of beams and adjusts the first array of beams to individually address atomic-based qubits in a chain from a first direction. Moreover, a second MCM, a second telecentric zoom lens, and a second interleaver form a second optical path of the Raman system that receives a second array of beams and adjusts the second arrays of beams to individually address the atomic-based qubits in the chain from a second direction different from the first direction.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: September 10, 2024
    Assignee: IonQ, Inc.
    Inventors: Neal C. Pisenti, Kai Makoto Hudek, Kenneth Wright, Tan Liu, David Angeley, Nadir Shah, Sarah Margaret Kreikemeier
  • Patent number: 12056573
    Abstract: A method of performing a computation using an ion trap quantum computer includes computing a detuning frequency function and an amplitude function of a laser pulse to cause entangling interaction between a pair of trapped ions of a plurality of trapped ions, each of the plurality of trapped ions having two frequency-separated states defining a qubit, splining the computed detuning frequency function of the laser pulse, modifying the computed amplitude function of the laser pulse based on the splined detuning frequency function, and applying a modified laser pulse having the splined detuning frequency function and the modified amplitude function to each trapped ion in the pair of trapped ions.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: August 6, 2024
    Assignee: IONQ, INC.
    Inventors: Reinhold Blumel, Nikodem Grzesiak, Yunseong Nam
  • Patent number: 12033031
    Abstract: A system and method is provided for optimizing an input quantum circuit. An exemplary method includes searching a library of templates to find, by compiling abstract gate operations into a set of hardware-specific operations that manipulate qubit states, a template of quantum circuit gates that performs a predetermined function and that matches a set of quantum circuit gates in the input quantum circuit that performs the predetermined function; and replacing the set of quantum circuit gates in the input quantum circuit with the template of quantum circuit gates when the template of quantum circuit gates has a lower quantum cost than the set of quantum circuit gates based on estimated execution times. Moreover, the method is executed in a pipeline in combination with at least quantum circuit compilation.
    Type: Grant
    Filed: August 30, 2023
    Date of Patent: July 9, 2024
    Assignee: IonQ, Inc.
    Inventors: Vandiver Chaplin, Yunseong Nam
  • Patent number: 12028604
    Abstract: Systems and techniques are provided for a camera server for heterogeneous cameras. Image data may be received from a first camera and second image data from a second camera of a heterogenous system that may be a trapped ion quantum computer. The first camera may observe trapped ions. The second camera may observe optical systems and laser beams. The second image data may have a different format than the first image data. The image data and the second image data may be converted into a format for a common data structure for image data. The image data may be sent in the format for the common data structure for image data to client computing devices. The second image data may be sent in the format for the common data structure for image data to additional client computing devices.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: July 2, 2024
    Assignee: IonQ Inc.
    Inventors: Melissa Jameson, Aleksey Blinov
  • Patent number: 12020121
    Abstract: Aspects of the present disclosure relate generally to systems and methods for use in the implementation and/or operation of quantum information processing (QIP) systems, and more particularly, to techniques for removing or correcting for translation errors between a programmed strength and an applied strength of quantum gates. A method is described that includes determining, for each quantum gate in a quantum operation, a non-linearity between an applied strength of a laser beam used for the respective quantum gate and a programmed strength intended to be applied by the laser beam for the respective quantum gate. The method further includes linearizing the non-linearity for each quantum gate and storing linearization information in memory. Moreover, the method includes applying the linearization information to correct for the non-linearity when implementing each quantum gate as part of the quantum operation. A system is also described that is configured to implement the method described above.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: June 25, 2024
    Assignee: IonQ, Inc.
    Inventors: Shantanu Debnath, Vandiver Chaplin, Kristin M. Beck, Melissa Jameson, Jason Hieu Van Nguyen
  • Patent number: 11994666
    Abstract: Aspects of the present disclosure describe techniques for independently controlling an angle (e.g., change in tilt) and/or position (e.g., change in lateral position) of an optical beam. For example, an optical beam control system may include a telescope with rotatable mirrors and lenses configured to provide a path to an optical beam to produce an output optical beam, which in turn is made into parallel optical beams following a diffractive optical element. The optical beam control system may also include a detector system to a beam angle and/or a beam position of one of the parallel optical beams to generate feedback signal or signals to control a rotation of one or more of the mirrors in the telescope such as to adjust the beam angle, the beam position, or both of the parallel optical beams. The optical beam control system may be part of a quantum information processing (QIP) system.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: May 28, 2024
    Assignees: IonQ, Inc., DUKE UNIVERSITY
    Inventors: Jungsang Kim, Kai Hudek, Jaime David Wong-Campos
  • Patent number: 11971322
    Abstract: The disclosure describes various aspects of different for automated testing of optical assemblies. A system is described that includes an arm (e.g., a motorized arm) configured to be positioned over an optical assembly having a base plate with multiple optical elements that form one or more optical beam paths. The system also includes at least one optical tool that is configured to be removably attached to the arm and has a measurement instrument to perform a specified test on at least one of the optical beam paths. The arm is configured to adjust its position over the optical assembly to move the optical tool to the correct place to perform the specified test. The system may also include an optical tool changer configured to hold the optical tool in a tool holder when not attached to the arm and to hold additional optical tools in respective tool holders.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: April 30, 2024
    Assignee: IonQ, Inc.
    Inventors: Jonathan Albert Mizrahi, Kai Hudek
  • Patent number: 11954560
    Abstract: Aspects of the present disclosure describe techniques for fast cooling of ion motion in a long chain using local motional modes. For example, a method is described for cooling down ions in a chain of ions that includes performing a cooling down sequence in which phonons are removed from the ions in the chain of ions by exciting and de-exciting local motional modes associated with individual ions, wherein sideband transitions that are part of the cooling down sequence are driven faster for the local motional modes than for collective motional modes for the same chain of ions; and completing the cooling down sequence when the local motional modes reach a ground state. A corresponding system and computer-readable storage medium for fast cooling of ion motion in a long chain using local motional modes are also described.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: April 9, 2024
    Assignee: IonQ, Inc.
    Inventor: Shantanu Debnath
  • Patent number: 11899292
    Abstract: The disclosure describes various aspects of a system with scalable and programmable coherent waveform generators. A network and digital-to-analog conversion (DAC) cards used by the network are described where each DAC card has a clock divider/replicator device with an input SYNC pin, a digital logic component, and one or more DAC components, and each output of the DAC components is used to control optical beams for a separate qubit of a quantum information processing (QIP) system. The network also includes a first distribution network to provide a clock signal to the clock divider/replicator device in the DAC cards, and a second distribution network to provide a start signal to the DAC cards, where the start signal is used by the digital logic component in the DAC card to assert the input SYNC pin when the start signal is asserted unless it is masked by the digital logic component.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: February 13, 2024
    Assignee: IonQ, Inc.
    Inventors: Joel Zvi Apisdorf, James Michael Williams, Phillip Douglas Solomon, Jason Madjdi Amini
  • Patent number: 11886956
    Abstract: The disclosure describes various techniques to control of small angle Mølmer-Sørensen (MS) gates and to handle asymmetric errors. A technique is described for handling asymmetric errors in quantum information processing (QIP) systems. An exemplary method includes implementing a quantum circuit in the QIP system that has first and second qubit lines, with a first qubit state having a greater measurement error than a second qubit state; swapping the roles of the first and second qubit states at a quantum circuit level in response to at least one of the first qubit line and the second qubit line being expected to be at the first qubit state at a measurement; and enabling a quantum simulation using the quantum circuit with the first and second qubit states reassigned in at least one of the first qubit line and the second qubit line after the swapping of the respective roles.
    Type: Grant
    Filed: August 12, 2022
    Date of Patent: January 30, 2024
    Assignee: IonQ, Inc.
    Inventors: Jwo-Sy Chen, Neal Pisenti, Yunseong Nam
  • Patent number: 11879847
    Abstract: Aspects of the present disclosure relate generally to systems and methods for use in the implementation and/or operation of quantum information processing (QIP) systems, and more particularly, to the correction of light-shift effects in trapped-ion quantum gates. Techniques are described for light-shift correction of single qubit gates when the gates are implemented using counter-propagating Raman laser beams and when the gates are implemented using co-propagating Raman laser beams. Moreover, techniques are also described for light-shift correction of two-qubit gates.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: January 23, 2024
    Assignee: IonQ, Inc.
    Inventors: Shantanu Debnath, Vandiver Chaplin
  • Patent number: 11853731
    Abstract: Systems and techniques are provided for pulse generation. A classical computing device may receive a program source code including quantum operations. The program source code may be compiled into a compiled program including the one or more quantum operations. Pulse shapes that a pulse shape library indicates corresponds to each of the quantum operations may be determined. Pulse instructions based on the one or more pulse shapes that the pulse shape library indicates corresponds to each of the quantum operations may be generated. Binary format instructions may be generated based on the pulse instructions. The binary format instruction may encode the pulse instructions in binary packets using a binary code of a field programmable gate array (FPGA) of a quantum computing device.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: December 26, 2023
    Assignee: IonQ, Inc.
    Inventors: Vandiver Chaplin, Jason Amini
  • Patent number: 11855407
    Abstract: Aspects of the present disclosure describe techniques for fast stabilization of multiple controller beams with continuous integrating filter. For example, a method is described for intensity stabilization of laser beams (e.g., ion controller beams) in a trapped ion system, where the method includes applying a linear array of laser beams to respective ions in a linear array of ions in a trap, performing, in response to the laser beams being applied, parallel measurements on the ions, the parallel measurements including multiple, separate measurements on each of the ions to identify fluctuations in intensity in the respective laser beams at each ion, and adjusting the intensity of one or more of the laser beams in response to fluctuations being identified from the parallel measurements. A corresponding system for intensity stabilization of laser beams in a trapped ion system is also described.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: December 26, 2023
    Assignee: IonQ, Inc.
    Inventors: Jonathan Albert Mizrahi, Neal Pisenti
  • Patent number: 11853849
    Abstract: The disclosure describes various aspects of a vibrationally isolated cryogenic shield for local high-quality vacuum. More specifically, the disclosure describes a cryogenic vacuum system replicated in a small volume in a mostly room temperature ultra-high vacuum (UHV) system by capping the volume with a suspended cryogenic cold finger coated with a high surface area sorption material to produce a localized extreme high vacuum (XHV) or near-XHV region. The system is designed to ensure that all paths from outgassing materials to the control volume, including multiple bounce paths off other warm surfaces, require at least one bounce off of the high surface area sorption material on the cold finger. The outgassing materials can therefore be pumped before reaching the control volume. To minimize vibrations, the cold finger is only loosely, mechanically connected to the rest of the chamber, and the isolated along with the cryogenic system via soft vacuum bellows.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: December 26, 2023
    Assignee: IonQ, Inc.
    Inventor: Jason Madjdi Amini
  • Patent number: 11823010
    Abstract: A method of determining a pattern in a sequence of bits using a quantum computing system includes setting a first register of a quantum processor in a superposition of a plurality of string index states, encoding a bit string in a second register of the quantum processor, encoding a bit pattern in a third register of the quantum processor, circularly shifting qubits of the second register conditioned on the first register, amplifying an amplitude of a state combined with the first register in which the circularly shifted qubits of the second register matches qubits of the third register, measuring an amplitude of the first register and determining a string index state of the plurality of string index states associated with the amplified state, and outputting, by use of a classical computer, a string index associated with the first register in the measured state.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: November 21, 2023
    Assignees: IONQ, INC., UNIVERSITY OF MARYLAND
    Inventors: Pradeep Niroula, Yunseong Nam
  • Patent number: 11816400
    Abstract: The disclosure describes various aspects of techniques for optimal fault-tolerant implementations of controlled-Za gates and Heisenberg interactions. Improvements in the implementation of the controlled-Za gate can be made by using a clean ancilla and in-circuit measurement. Various examples are described that depend on whether the implementation is with or without measurement and feedforward. The implementation of the Heisenberg interaction can leverage the improved controlled-Za gate implementation. These implementations can cut down significantly the implementation costs associated with fault-tolerant quantum computing systems.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: November 14, 2023
    Assignee: IonQ, Inc.
    Inventors: Yunseong Nam, Dmitri Maslov