Patents Assigned to Iowa State University Research
  • Patent number: 11685977
    Abstract: Undercooled liquid metallic core-shell particles, whose core is stable against solidification at ambient conditions, i.e. under near ambient temperature and pressure conditions, are used to join or repair metallic non-particulate components. The undercooled-shell particles in the form of nano-size or micro-size particles comprise an undercooled stable liquid metallic core encapsulated inside an outer shell, which can comprise an oxide or other stabilizer shell typically formed in-situ on the undercooled liquid metallic core. The shell is ruptured to release the liquid phase core material to join or repair a component(s).
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: June 27, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Martin Thuo, Ian Tevis
  • Patent number: 11680243
    Abstract: Various embodiments disclosed relate to conductive graphene matrix-encapsulated cells. A matrix-encapsulated cell includes an encapsulating polymer matrix including a biopolymer and graphene. The matrix-encapsulated cell also includes one or more of the cells encapsulated within the encapsulating polymer, wherein the graphene directly contacts at least some of the cells. The matrix encapsulating the one or more cells is electrically conductive.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: June 20, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Nicole Nastaran Hashemi, Reza Montazami, Marilyn Christine McNamara, Jasmin Okuzono
  • Patent number: 11672852
    Abstract: The present invention provides vaccine or immunogenic compositions comprising novel antigens derived from the equine strain of influenza H3N8. These proteins and specific immunogenic domains are effective as primary universal influenza antigens. The disclosed vaccines or immunogenic compositions are highly effective in inducing HA specific antibodies reactive to different influenza viruses, mucosal and systemic immune responses, and cross-protection regardless of influenza virus subtypes. In some embodiments, the vaccine is cross-protective against two or more (e.g., 2, 3, 4, 5, or 6) subtypes of influenza with or without the use of an adjuvant.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: June 13, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: David Verhoeven, Jessie Dorothy Trujillo, Brett Sponseller
  • Patent number: 11649537
    Abstract: Provided are Ce/Co/Cu permanent magnet alloys containing certain refractory metals, such as Ta and/or Hf, and optionally Fe which represent economically more favorable alternative to Sm-based magnets with respect to both material and processing costs and which retain and/or improve magnetic characteristics useful for GAP MAGNET applications.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: May 16, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Andriy Palasyuk, Tej Nath Lamichhane, Olena Palasyuk, Vladimir Antropov, Paul C. Canfield, Ralph W. McCallum
  • Patent number: 11633807
    Abstract: Various embodiments relate to forming particles using undercooled metal particles in response to focused low power laser light. Particle growth can be initiated by utilizing the metastable and liquid nature of the particles, allowing for surface instability promoted by the laser light to induce liquid flow to translate to a neighboring particle. This event can cascade radially leading to accumulation of the liquid metal at the epicenter. The grown solidified particle size can be varied by using different power, exposure time, or working distance. Once the liquid has accumulated into a single region, it eventually solidifies either through homogeneous or heterogeneous nucleation to give a solid particle of larger size than the original. Such a method can be used to print patterns on a surface in four dimensions, where the fourth dimension (4D) is attained through gradient in size of the particles made. Additional systems and methods are disclosed.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: April 25, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Martin Thuo, Peter C. Collins, Andrew Martin
  • Patent number: 11613630
    Abstract: One or more techniques and/or systems are disclosed for a dry-type lubricant for use in a dry product hopper to help improve dry product flow and to improve anti jamming properties of the dry product. The example lubricant can comprise a hydrophilic fiber, such as cellulose, having a width to length aspect ratio that provides a thin fiber. A plurality of hydrophobic particles are deposited on the surface of the fiber, resulting in a fiber surface exhibiting amphiphobic properties. Further, the fiber can operably absorb water, and then releases the absorbed water to the surface of the fiber under mechanical stress, such as when mixed with a product in a hopper. This can result in the water being disposed on the surface of the fiber, to provide lubrication to a product in a hopper to improve flow and anti jamming characteristics of the product in the hopper.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: March 28, 2023
    Assignee: Iowa State University Research Foundation
    Inventors: Martin Thuo, Paul Ramon Gregory, Boyce S. Chang, Chuanshen Du
  • Patent number: 11612871
    Abstract: The disclosure relates to a composition comprising amphiphilic Janus particles and a waterborne binder, wherein the particles are self-stratified, and methods of making and using the same. The disclosure also relates to the synthesis of amphiphilic Janus particles.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: March 28, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Yifan Li, Shan Jiang
  • Patent number: 11608546
    Abstract: Disclosed herein are embodiments of an Al—Ce—Mn alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: March 21, 2023
    Assignees: UT-Battelle LLC, Eck Industries Incorporated, Iowa State University Research Foundation, Inc., Lawrence Livermore National Security, LLC, University of Tennessee Research Foundation
    Inventors: Lawrence Allard, Jr., Sumit Bahl, Ryan Dehoff, Hunter Henderson, Michael Kesler, Scott McCall, Peeyush Nandwana, Ryan Ott, Alex Plotkowski, Orlando Rios, Amit Shyam, Zachary Sims, Kevin Sisco, David Weiss, Ying Yang
  • Patent number: 11597804
    Abstract: The present application is directed to a nanocomposite organo gel having a continuous polymeric network structure, wherein polymer chains are held together by ionic interaction between polymer chain ends, interparticle chain entanglements, layered silicate surface modifier, ionic salt, and layered silicate. The present application is also directed to methods of making and using the nanocomposite organo gel.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: March 7, 2023
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Eric W. Cochran, Sri Harsha Kalluru
  • Patent number: 11590717
    Abstract: A magnetic ink composition for three-dimensional (3D) printing a bonded magnet is provided. The magnetic ink composition includes magnetic particles, a polymer binder and a solvent. A 3D printing method for fabrication of a bonded magnet using the magnetic ink composition is also provided.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: February 28, 2023
    Assignees: UT-Battelle, LLC, Iowa State University Research Foundation, Inc.
    Inventors: Brett G. Compton, Mariappan Parans Paranthaman, Orlando Rios, Cajetan I. Nlebedim
  • Patent number: 11584978
    Abstract: Undercooled liquid metallic core-shell particles, whose core is stable against solidification at ambient conditions, i.e. under near ambient temperature and pressure conditions, are used to join or repair metallic non-particulate components. The undercooled-shell particles in the form of nano-size or micro-size particles comprise an undercooled stable liquid metallic core encapsulated inside an outer shell, which can comprise an oxide or other stabilizer shell typically formed in-situ on the undercooled liquid metallic core. The shell is ruptured to release the liquid phase core material to join or repair a component(s).
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: February 21, 2023
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Martin Thuo, Ian Tevis
  • Patent number: 11585000
    Abstract: A cathode is provided for electrolysis of water wherein the cathode material comprises a multi-principal element, transition metal dichalcogenide material that has four or more chemical elements and that is a single phase, solid solution. The pristine cathode material does not contain platinum as a principal (major) component. However, a cathode comprising a transition metal dichalcogenide having platinum (Pt) nanosized islands or precipitates disposed thereon is also provided.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: February 21, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Viktor Balema, Sonal Padalkar, Ihor Hlova, Tian Lan, Oleksandr Dolotko, Vitalij K. Pecharsky, Duane D. Johnson, Arjun K. Pathak, Prashant Singh
  • Patent number: 11576883
    Abstract: The present invention generally provides methods and compositions for the treatment of Parkinson's disease and depression and/or anxiety. The invention relates to recombinant microorganisms, particularly gut-colonizing probiotics, modified to produce L-DOPA.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 14, 2023
    Assignees: Iowa State University Research Foundation, Inc., Board of Regents, The University of Texas System
    Inventors: Anumantha G. Kanthasamy, Ahmed Abdalla, Gregory Phillips, Nicholas Backes, Andrew D. Ellington, Ross Thyer
  • Patent number: 11576353
    Abstract: An apparatus, systems, and methods of providing enrichment to poultry during raising or maintaining of the poultry. One or more light sources project beams to generate laser spots at and around the poultry. A control regimen moves the light spots relative the poultry in generally random fashion during timed sessions for each given time period (e.g. each day). The spot movement is designed to promote benefits to poultry and producer in correlation to experimental data related to animal welfare, health, and commercial value.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: February 14, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Elizabeth Ann Kraayenbrink, Anna Butters-Johnson, Derek Kraayenbrink
  • Publication number: 20230025426
    Abstract: A coil configuration and method for transcranial magnetic stimulation enabling stimulation of deep regions of the brain without excessively stimulating the cortex is provided. The coil configuration utilizes at least one coil to produce an off-plane magnetic field to enhance the magnetic field from a top TMS coil. In one configuration at least a single variable position coil referred to as the Variable Halo Coil and positionable vertically and/or angularly is used.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 26, 2023
    Applicant: Iowa State University Research Foundation, Inc.
    Inventors: David C. Jiles, Magundappa Ravi L. Hadimani, Priyam Rastogi
  • Patent number: 11547867
    Abstract: A coil configuration and method for transcranial magnetic stimulation enabling stimulation of deep regions of the brain without excessively stimulating the cortex is provided. The coil configuration utilizes at least one coil to produce an off-plane magnetic field to enhance the magnetic field from a top TMS coil. In one configuration three coils, referred to as the Triple Halo Coil and oriented at +30°, 0°, and ?30° relative to the plane of the TMS coil, are used. In another configuration a single variable position coil referred to as the Variable Halo Coil and positionable vertically and/or angularly is used.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: January 10, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: David C. Jiles, Magundappa Ravi L. Hadimani, Priyam Rastogi
  • Patent number: 11542322
    Abstract: Provided are aggregate alpha-synuclein specific antibodies as well as fragments, derivatives, and variants thereof as well as method related thereto for the early diagnostic and treatment of Parkinson's Disease and other Lewy body- and Lewy neurite-based diseases. Assays, kits, systems, and nanoparticle encapsulated compositions related to the antibodies or fragments, derivatives, and variants thereof are also disclosed.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 3, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Balaji Narasimhan, Surya Mallapragada, Anumantha G. Kanthasamy, Manohar John, Vellareddy Anantharam
  • Patent number: 11542454
    Abstract: The present invention is toward a base oil or lubricant additives, methods of using the same, lubricant compositions including the same, and methods of forming the lubricant compositions. A base oil or lubricant additive has Structure I or Structure II as described herein.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: January 3, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: George A. Kraus, Kyle Podolak, Derek Lee White, Sriram Sundararajan
  • Patent number: 11542520
    Abstract: Method of increasing protein content in a eukaryotic cell comprising an NF-YC4 gene comprising modifying the transcriptional repressor binding site; method of producing a plant with increased protein content comprising crossing and selecting for increased protein content; method of increasing resistance to a pathogen or a pest in a plant cell or plant comprising an NF-YC4 gene comprising modifying the transcriptional repressor binding site, alone or in further combination with expressing QQS in the plant cell or plant; method for producing a plant with increased resistance to a pathogen or a pest comprising crossing and selecting for increased resistance to the pathogen or the pest; a cell, collection of cells, tissue, organ, or organism, such as a plant, in which the NF-YC4 gene comprises a promoter comprising a transcriptional repressor binding site that has been modified so that the transcriptional repressor cannot prevent transcription of the NF-YC4; plants and hybrids thereof; and seeds.
    Type: Grant
    Filed: April 4, 2020
    Date of Patent: January 3, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Ling Li, Eve Syrkin Wurtele
  • Patent number: 11536721
    Abstract: In a general aspect, an apparatus can include a first carbon nanotube array that is patterned to define a first electrode having a first plurality of electrode segments. The apparatus can also include a second carbon nanotube array that is patterned to define a second electrode having a second plurality of electrode segments. The second plurality of electrode segments can be interdigitated with the first plurality of electrode segments. The apparatus can further include a biorecognition agent disposed on a surface of the first electrode and disposed on a surface of the second electrode. The first plurality of electrode segments can each have a height-to-width aspect ratio of at least 1 to 1.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: December 27, 2022
    Assignees: Iowa State University Research Foundation, Inc., Brigham Young University
    Inventors: Jonathan Claussen, Suprem Das, Brian D. Iverson