Abstract: The present invention concerns a novel method to efficiently score documents (texts, images, audios, videos, and any other information file) by using a machine-learned ranking function modeled by an additive ensemble of regression trees. A main contribution is a new representation of the tree ensemble based on bitvectors, where the tree traversal, aimed to detect the leaves that contribute to the final scoring of a document, is performed through efficient logical bitwise operations. In addition, the traversal is not performed one tree after another, as one would expect, but it is interleaved, feature by feature, over the whole tree ensemble. Tests conducted on publicly available LtR datasets confirm unprecedented speedups (up to 6.5×) over the best state-of-the-art methods.
Abstract: The present invention concerns a novel method to efficiently score documents (texts, images, audios, videos, and any other information file) by using a machine-learned ranking function modeled by an additive ensemble of regression trees. A main contribution is a new representation of the tree ensemble based on bitvectors, where the tree traversal, aimed to detect the leaves that contribute to the final scoring of a document, is performed through efficient logical bitwise operations. In addition, the traversal is not performed one tree after another, as one would expect, but it is interleaved, feature by feature, over the whole tree ensemble. Tests conducted on publicly available LtR datasets confirm unprecedented speedups (up to 6.5×) over the best state-of-the-art methods.