Patents Assigned to ITN Energy System, Inc.
  • Publication number: 20130171527
    Abstract: This disclosure describes metal-air battery devices that are rechargeable, thin film, and all solid-state. The disclosure further describes methods of manufacturing rechargeable, thin film, all solid-state, metal-air batteries. The devices disclosed include a porous cathode structure with an electrolyte incorporated therein. The porous cathode structure may be designed to contain pores of at least two distinct sizes (i.e., having bimodal pore size distribution), a smaller one to increase the active surface area of the cathode and a larger to facilitate the transport of gas-phase oxygen through the cathode. The methods disclosed include using pulsed microwave plasma enhanced chemical vapor deposition (p-?PECVD) to dynamically grow an electrolyte layer on the surface of the carbon within, or a desired portion of, the cathode structure.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 4, 2013
    Applicant: ITN Energy Systems, Inc.
    Inventor: ITN Energy Systems, Inc.
  • Publication number: 20130154113
    Abstract: This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 20, 2013
    Applicant: ITN Energy Systems, Inc.
    Inventor: ITN Energy Systems, Inc.
  • Publication number: 20130157152
    Abstract: This disclosure describes metal air battery devices with an anode structure having a plurality of electrodes. An anode is disclosed having a metal source as well as a current collector that together function as an active, reversible, working anode. The source is used for metal-ions that are stripped and stored in the current collector. At this point the current collector contains the metal-ions to be propagated through the rest of the device. Metal-ions may be stripped from and deposited on the current collector, while metal-ions may only be stripped from the source. Upon use of the device metal-ions may be lost to the system for a variety of reasons. To counteract the loss of metal-ions, the current collector is replenished of metal-ions from the source.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 20, 2013
    Applicant: ITN Energy Systems, Inc.
    Inventor: ITN Energy Systems, Inc.
  • Patent number: 8455137
    Abstract: An apparatus for use as a fracture absorption layer, and an apparatus for use as an electrochemical device are taught. The apparatuses of the present invention may be of particular use in the manufacture of thin-film, lightweight, flexible or conformable, electrochemical devices such as batteries, and arrays of such devices. The present invention may provide many advantages including stunting fractures in a first electrochemical layer from propagating in a second electrochemical layer.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: June 4, 2013
    Assignee: ITN Energy Systems, Inc.
    Inventors: Martin H. Benson, Bernd J. Neudecker
  • Publication number: 20130101751
    Abstract: The present disclosure describes methods of inserting lithium into an electrochromic device after completion. In the disclosed methods, an ideal amount of lithium can be added post-fabrication to maximize or tailor the free lithium ion density of a layer or the coloration range of a device. Embodiments are directed towards a method to insert lithium into the main device layers of an electrochromic device as a post-processing step after the device has been manufactured. In an embodiment, the methods described are designed to maximize the coloration range while compensating for blind charge loss.
    Type: Application
    Filed: July 9, 2012
    Publication date: April 25, 2013
    Applicant: ITN Energy Systems Inc.
    Inventors: Brian Spencer Berland, Bruce Roy Lanning, Jonathan Mack Frey, Kathryn Suzanne Barrett, Paul DuPont, Ronald William Schaller
  • Patent number: 8207442
    Abstract: In an embodiment, one reinforced substrate for use in a photovoltaic device includes a polymer base material and a reinforcing structure bonded with the base material. The reinforced substrate presents a surface in a condition that is made-ready for deposition of thin film layers of the photovoltaic device. A thin film photovoltaic device includes the reinforced substrate, a back contact layer formed on the surface of the reinforced substrate, and a solar absorber layer formed on the back contact layer. A plurality of thin film photovoltaic devices may be formed on a common reinforced substrate. A process of producing a reinforced substrate includes combining a fluid base material and a fiber reinforcing structure to form an impregnated fiber reinforcement. The impregnated fiber reinforcement is cured to form the reinforced substrate, and the reinforced substrate is annealed.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 26, 2012
    Assignee: ITN Energy Systems, Inc.
    Inventors: Lawrence M. Woods, Joseph H. Armstrong, Rosine M. Ribelin, Thomas Duncan Barnard, Yukinari Harimoto, Hidekatsu Hatanaka, Maki Itoh, Dimitris Elias Katsoulis, Michitaka Suto, Bizhong Zhu, Nicole R. Anderson, Herschel Henry Reese
  • Patent number: 8124870
    Abstract: A thin-film photovoltaic device includes a semi-transparent back contact layer. The semi-transparent back contact layer includes a semi-transparent contact layer and a semi-transparent contact interface layer. The thin-film photovoltaic device may be formed in a substrate or superstrate configuration. A tandem thin-film photovoltaic device includes a semi-transparent interconnect layer. The semi-transparent interconnect layer includes a semi-transparent contact layer and a semi-transparent contact interface layer.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: February 28, 2012
    Assignee: ITN Energy System, Inc.
    Inventors: Lawrence M. Woods, Rosine M. Ribelin
  • Patent number: 7773228
    Abstract: A surface-plasmon electric field sensor has a plasmonic portion having an electro-optic dielectric material coated on one side with a transparent conductive layer and on another side with a thin layer of conductive metallic layer. The metallic layer has alternating grating and smooth regions, the smooth regions being of length near a multiple of an effective wavelength of the light in the electro-optic layer, and the grating regions having lines on a pitch near the effective wavelength. The sensor has a light source for illuminating the plasmonic portion with plane-polarized light having a free-space wavelength and a photodetector.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: August 10, 2010
    Assignee: ITN Energy Systems, Inc.
    Inventors: Russell E. Hollingsworth, Bruce Roy Lanning
  • Patent number: 7772555
    Abstract: Systems and apparatus enhance transmission of electromagnetic energy through a sub-wavelength aperture. A metal film has an input surface and an output surface and forms the sub-wavelength aperture between the input and output surfaces, a first plurality of grooves on the input surface, and a cavity around the sub-wavelength aperture. The width of the cavity determines a resonant wavelength of electromagnetic energy transmitted through the sub-wavelength aperture. The patterned metal film provides plasmon coupling of electromagnetic energy incident upon the input surface transmit electromagnetic energy through the sub-wavelength aperture.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: August 10, 2010
    Assignee: ITN Energy Systems, Inc.
    Inventor: Russell E. Hollingsworth
  • Patent number: 7682494
    Abstract: Materials for use in proton transport characterized by several formulas are disclosed. Mixed ion and electron conductors may include metals and/or ceramic electron conductors and a proton conducting material. Hydrogen separation membranes may include porous layers and an electrolyte layer including a proton conducting material and an electron conductor. Hydrogen separation membranes may be formed by thermal spray techniques. Hydrogen separation membranes may include a catalyst layer. A method of separating hydrogen from a mixed gas stream includes passing the mixed gas through a first porous layer to an electrolyte layer, dissociating protons and electrons, diffusing the protons and electrons through the electrolyte layer, recombining them, and passing molecular hydrogen through a second porous layer.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: March 23, 2010
    Assignee: ITN Energy Systems, Inc.
    Inventors: Brian S. Berland, Sabina Gade, Ronald W. Schaller, Michael Schwartz
  • Publication number: 20090308437
    Abstract: A thin-film photovoltaic device includes a semi-transparent back contact layer. The semi-transparent back contact layer includes a semi-transparent contact layer and a semi-transparent contact interface layer. The thin-film photovoltaic device may be formed in a substrate or superstrate configuration. A tandem thin-film photovoltaic device includes a semi-transparent interconnect layer. The semi-transparent interconnect layer includes a semi-transparent contact layer and a semi-transparent contact interface layer.
    Type: Application
    Filed: September 19, 2007
    Publication date: December 17, 2009
    Applicant: ITN ENERGY SYSTEMS, INC.
    Inventors: Lawrence M. Woods, Rosine M. Ribelin
  • Publication number: 20080185521
    Abstract: Systems and apparatus enhance transmission of electromagnetic energy through a sub-wavelength aperture. A metal film has an input surface and an output surface and forms the sub-wavelength aperture between the input and output surfaces, a first plurality of grooves on the input surface, and a cavity around the sub-wavelength aperture. The width of the cavity determines a resonant wavelength of electromagnetic energy transmitted through the sub-wavelength aperture. The patterned metal film provides plasmon coupling of electromagnetic energy incident upon the input surface transmit electromagnetic energy through the sub-wavelength aperture.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 7, 2008
    Applicant: ITN ENERGY SYSTEMS, INC.
    Inventor: Russell E. Hollingsworth
  • Publication number: 20080115827
    Abstract: In an embodiment, one reinforced substrate for use in a photovoltaic device includes a polymer base material and a reinforcing structure bonded with the base material. The reinforced substrate presents a surface in a condition that is made-ready for deposition of thin film layers of the photovoltaic device. A thin film photovoltaic device includes the reinforced substrate, a back contact layer formed on the surface of the reinforced substrate, and a solar absorber layer formed on the back contact layer. A plurality of thin film photovoltaic devices may be formed on a common reinforced substrate. A process of producing a reinforced substrate includes combining a fluid base material and a fiber reinforcing structure to form an impregnated fiber reinforcement. The impregnated fiber reinforcement is cured to form the reinforced substrate, and the reinforced substrate is annealed.
    Type: Application
    Filed: April 18, 2007
    Publication date: May 22, 2008
    Applicants: ITN ENERGY SYSTEMS, INC., DOW CORNING CORPORATION
    Inventors: Lawrence M Woods, Joseph H. Armstrong, Rosine M. Ribelin, Thomas Duncan Barnard, Yukinari Harimoto, Hidekatsu Hatanaka, Maki Itoh, Dimitris Elias Katsoulis, Michitaka Suto, Bizhong Zhu, Nicole R. Anderson, Herschel Henry Reese
  • Patent number: 7176450
    Abstract: A near-field scanning optical microscope system exposes photoresist on a substrate. The system includes an NSOM probe, and translational stages capable of moving one of the probe and the substrate such that the probe traverses, in continuous motion, over the entire substrate. Another near-field scanning optical microscope system exposes photoresist on a substrate using an array of NSOM probes. Methods for exposing photoresist on a substrate include the steps of translating a surface of the substrate across an NSOM probe (or an array of NSOM probes) in continuous motion.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: February 13, 2007
    Assignee: ITN Energy Systems, Inc.
    Inventor: Russell E. Hollingsworth
  • Patent number: 6772501
    Abstract: The present invention relates to the design and manufacture of single cell units for planar, thin-film, ceramic electrochemical devices such as solid oxide fuel cells, electrochemical oxygen generators, gas separation membranes, and membrane modules and stacks and the fabrication of multi-cell stacks and modules of the single cell units. The design is based upon a single cell wherein manufacturing all layers of the device into an integral unit produces a monolithic structure. The design produces a gas-tight single cell that is easily assembled into multi-cell stacks and modules without external seals or sealing mechanisms. The design may use standard ceramic and metallurgical production techniques. The design of the present invention enhances device performance since the single cell units are inherently sealed for gas tightness and have reduced interfacial electrical resistances.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: August 10, 2004
    Assignee: ITN Energy Systems, Inc.
    Inventors: William G. Barker, Brian S. Berland, Michael Schwartz, Lin Simpson, Joseph Armstrong
  • Patent number: 6770176
    Abstract: Methods of manufacturing an electrochemical device, are taught. The methods may be of particular use in the manufacture of thin-film, lightweight, flexible or conformable, electrochemical devices such as batteries, and arrays of such devices. The methods may provide many advantages including stunting fractures in a first electrochemical layer from propagating in a second electrochemical layer.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: August 3, 2004
    Assignee: ITN Energy Systems. Inc.
    Inventors: Martin H. Benson, Bernd J. Neudecker