Abstract: The invention provides a LM609 grafted antibody comprising one or more CDRs having at least one amino acid substitution, where the LM609 grafted antibody has &agr;v&bgr;3 binding activity. Nucleic acids encoding LM609 grafted heavy and light chains are additionally provided. Functional fragments of such encoding nucleic acids are similarly provided. The invention also provides a method of inhibiting a function of &agr;v&bgr;3. The method consists of contacting &agr;v&bgr;3 with a LM609 grafted antibody or functional fragments thereof under conditions which allow binding to &agr;v&bgr;3. Finally, the invention provides for a method of treating an &agr;v&bgr;3-mediated disease. The method consists of administering an effective amount a LM609 grafted antibody or functional fragment thereof under conditions which allow binding to &agr;v&bgr;3.
Abstract: The invention provides a method of reducing the proliferation of a neoplastic cell. The method consists of contacting the neoplastic cell with a cytotoxic or cytostatic binding agent specifically reactive with an aberrantly expressed vesicular membrane associated neoplastic cell specific internalizing antigen. The neoplastic cell specific internalizing anitgen can be selected from the group consisting of lamp-2 and limp II families of lysosomal integral membrane proteins. Also provided is a method of intracellular targeting of a cytotoxic or cytostatic agent to a neoplastic cell population.
Abstract: A composition of matter comprising a plurality of procaryotic cells containing diverse combinations of first and second DNA sequences encoding first and second polypeptides which form a heteromeric receptor exhibiting binding activity toward a preselected molecule, those heteromeric receptors being expressed on the surface of filamentous bacteriophage.
Abstract: The invention relates to methods for manipulating nucleic acids so as to optimize the binding characteristics of an encoded binding protein by providing two or more nucleic acids encoding binding proteins having at least one set of splicing sites, the set of splicing sites flanking opposite ends of one or more encoded binding domains; mixing the nucleic acids to produce a parent population of mixed nucleic acids encoding binding proteins; and randomly incorporating the binding domains between the nucleic acids through the set of splicing sites to produce a different population of nucleic acids encoding binding proteins wherein at least one binding protein is characterized by substantially different binding characteristics than a member of the parent population.